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Organization of the thesis
The present habilitation thesis deals with the rigorous algebraic approach to non-equilibrium quantum statistical
mechanics I’ve been involved in recently. The main body of the thesis consists of original research articles
(Chapters 2 to 9) to which I prepend an overview (Chapter 1) whose goal is twofold. It is supposed to serve,
first, as a general introduction to non-equilibrium quantumstatistical mechanics and, second, as a condensed
presentation of our work on the specific models of Chapters 2 to 9 within the framework of the foregoing
general theory.

More precisely, in Section 2 of Chapter 1, I explain theC∗-algebraic approach to non-equilibrium quantum
statistical mechanics. In Section 3, the general frameworkof Section 2 is specialized to the important case of
open systems, a setting which serves as paradigm for the study of systems out of equilibrium. In Sections 4 to
8, these general concepts are applied to the class of quasi-free models (besides Section 7 which is of greater
generality). In order to keep the overview sufficiently short, we omit most of the details in the main text. If,
however, it is felt that more details have to be given, they are put into footnotes. Moreover, the proofs, if
displayed at all, are sketched only. Detailed proofs can be found in the Chapters 2 to 9.
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Chapter 1

Overview

1 Introduction

Since a few years, there is a renewed interest in the
field of rigorous non-equilibrium quantum statistical
mechanics (cf. [7, 27] for example for a brief introduc-
tion). At the heart of this activity is the construction
of the so-callednon-equilibrium steady state(NESS)
and the corresponding meanentropy production rate
(EPR). Although a time independent approach to the
construction of NESS has become available recently
(cf. [27, 28]), most of the work described in this
overview uses the more traditional approach making
use of time dependent scattering theory on the algebra
of observables (cf. [38, 39]).1 Furthermore, the mod-
els we consider are so-calledopen systems. An open
system configuration consists of asamplesystem be-
ing frequently finite dimensional or at least confined,
and an extendedreservoir (also calledenvironment)
which, in turn, may consist of several subreservoirs,
cf. Figure 1.

For the sake of concreteness, we start off, wherever
possible, with the discussion of a particular open sys-
tem, the so-calledXY chain(cf. [3, 4]) which is a
special instance of the class of Heisenberg spin mod-
els in one dimension (cf. [33]). In due course, we
will extend the exposition to the more generalelec-
tronic black box(EBB) model which is a quasi-free
fermionic system whose dynamics act by so-calledBo-
goliubov evolutions (cf. [7, 9]).2 As a consequence,
the problem of constructing a NESS boils down to a
scattering problem in the one-particle Hilbert space

1The algebraic framework allows for a “coordinate free” de-
scription of the thermodynamic limit of a local system.

2Occasionally, we will report on results in a particular EBB
model, the so-calledsimpleEBB (SEBB) model treated in [7].

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�������
�������
�������

�������
�������
�������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

 SR

...

R

R1

2

M

Figure 1: The sampleS coupled toM reservoirsRj.

over which the observable algebra is built. For our
choice of couplings between the sample and the reser-
voirs3, we are left with a problem from time dependent
scattering theory for perturbations of trace class type.

Then, having a (unique) NESS at our disposal, we can
study the thermodynamics of an open system. First
and foremost, we are interested in the existence of
non-vanishing steady heat4 fluxes across the sample.
This is equivalent to show that the mean EPR in this
NESS is strictly positive. Whereas, in certain cases, it
is possible to do that in the full microscopic model (cf.
[28, 4, 7]), we rely, in other cases, on theweak cou-
pling (or van Hove) description which allows to ex-
tract the leading order contribution to the mean EPR
for sufficiently small couplings (cf. [5, 7]). Of course,
for this purpose, we have to make sure that the weak
coupling regime can indeed be rigorously related to the
microscopic description (cf. [28, 7]).
Moreover, we will see that the scattering approach nat-
urally leads to the so-calledLandauer-Büttiker theory
which expresses such fluxes (and, hence, the mean
EPR) by means of the scattering operator of the un-
derlying scattering process. Using this theory, we de-
rive theOnsager reciprocity relations(ORR) and the

3Symbolized by the shaded tube in Figure 1.
4or matter or charge etc.
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Green-Kubo fluctuation-dissipation formula(GKF) of
linear response theory (cf. [9]). Linear response the-
ory provides an approximation of the physical situa-
tion where the non-equilibrium configuration is not too
far from equilibrium.
Finally, we studycorrelation functionswhich describe
the spatial interdependence of typical observables in
systems out of equilibrium (and in more general quasi-
free systems) using Toeplitz theory. Whereas, for
some type of correlations (spin-spin, emptiness forma-
tion), we establish spectral criteria on the density of
the quasi-free (non-equilibrium) state which guaran-
tee exponential decay in the limit of large space sepa-
ration (cf. [6, 10, 11, 12]), we directly determine the
exact asymptotic behavior for others (von Neumann
entropy, cf. [8]). Moreover, we recently started the in-
vestigation of a specific temporal correlation function
in quasi-free systems, namely the generating function
of the Gallavotti-Cohen symmetry (cf. [13]).

2 General framework

In this Section, we first explain the general set-up used
in the algebraic description of a quantum mechanical
system, namely the objects representing its algebra of
observables, its physical states, and its dynamics. Af-
terwards, we introduce a particular state, the NESS,
which has already been mentioned in the Introduction.
Finally, the mean EPR in a NESS is defined as the rate
of change of the so-calledrelative entropy.

Algebraic quantum statistical mechanics

The physical observables of a quantum mechanical
system are elements of aC∗-algebraO with identity5,
whereas the time evolution is defined to be a strongly

5A C∗-algebraO is an algebra (overC here) equipped with an
involution∗ and a submultiplicative norm‖ · ‖ which is complete
and has the property

‖A∗A‖ = ‖A‖2.

An identity1 is an element ofO such that1A = A1 = A.

continuous groupτ t of ∗-automorphisms6 of O.7 We
denote the group of∗-automorphism ofO by Aut(O).
Such aτ t is called aC∗-dynamicsand the pair(O, τ)
aC∗-dynamical system(cf. [17, p.136]).

Remark 1Note that it is not possible to assume the
dynamics to be strongly continuous for all quantum
mechanical systems, e.g. for free bosons, the dynam-
ics isσ-weakly continuous only (cf. [18, p.57]).8 But,
since we are treating free fermionic systems in the fol-
lowing whose dynamics are strongly continuous, we
restrict our discussion toC∗-dynamical systems.

A stateω is a normalized9 positive10 linear functional
onO. We denote byE(O) the set of all states onO.11

For most computational purposes, we have to choose
some Hilbert space “coordinatization”, i.e. we have
to leave the representation independent formulation in
terms ofC∗-algebras. A useful coordinatization is es-
tablished with the help of the so-calledGNS theorem12

which, for any stateω ∈ E(O), asserts the existence
(and uniqueness13) of a representationπω of theC∗-
algebraO on some Hilbert spaceHω s.t.

ω(A) = (Ωω, πω(A)Ωω)

for some cyclic14 vectorΩω ∈ Hω. W.r.t. this repre-
sentation, we can introduce the following two types of
states. First, for a givenω ∈ E(O), a linear functional

6A ∗-automorphism ofO is a bijective∗-morphism ofO into
itself.

7 More precisely,τ is a strongly continuous representation of
the additive groupR in Aut(O), i.e. τ t ∈ Aut(O) with

τ 0 = 1, τ sτ t = τ s+t,

and the mapR ∋ t 7→ τ t(A) ∈ O is continuous in norm.
8This is then called aW ∗-dynamical system.
9I.e. ω(1) = 1.

10I.e. ω(A∗A) ≥ 0. Note thatω is continuous ifω is positive
(cf. [17, p.49]). Hence,ω ∈ O∗, whereO∗ is the Banach space
dual ofO.

11E(O) is a convex subset ofO∗. Moreover, it is compact in
the weak-∗ topology (cf. [17, p.53]).

12The Gelfand-Naimark-Segal theorem (cf. [18, p.56]).
13Up to unitary equivalence.
14I.e. the set{πω(A)Ωω : A ∈ O} is dense inHω.
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ω′ ∈ O∗ is calledω-normaliff there exists a trace class
operatorρ′ ∈ L1(Hω)15 s.t.

ω′(A) = tr(ρ′ πω(A)).

We denote byNω the set of allω-normal states. Sec-
ond, a stateω ∈ E(O) is called afactor stateiff its en-
veloping von Neumann algebra16 Mω = πω(O)′′ is a
factor.17 Moreover, again representation independent,
we define the following states used later on. Let(O, τ)
be aC∗-dynamical system,ω ∈ E(O), β ∈ R, and
Dβ = {z ∈ C : min{0, β} < Imz < max{0, β}}. A
stateω is a(τ, β)-KMS state18 iff, for any A,B ∈ O,
there exists a holomorphic functionFA,B onDβ which
is bounded and continuous on the closureDβ with
boundary values19

FA,B(t) = ω(Aτt(B)),

FA,B(t+ iβ) = ω(τt(B)A).

Finally, a stateω ∈ E(O) is calledmodular iff there
exists aC∗-dynamicsσt

ω on O s.t. ω is a (σω,−1)-
KMS state.

Non-equilibrium steady states

We now address our main question of how to set up
the frame for the description of systems which are out
of equilibrium. First and foremost, we have to provide
a definition of what could make up a sensible class of
non-equilibrium states. Following [38, 39], we define
the class ofnon-equilibrium steady states(NESS) as
follows.

15We denote byL(H) andL1(H) the bounded operators and
the trace class operators on the Hilbert spaceH, respectively.

16A von Neumann algebraM on a Hilbert spaceH is a ∗-
subalgebra ofL(H) (with the adjoint operation as involution) such
thatM′′ = M. Here,

M
′ = {A ∈ L(H) : [A,B] = 0 for allB ∈ M}

is called thecommutantof M, where[A,B] = AB−BA denotes
the commutator ofA andB. Moreover,M′′ = (M′)′ is the so-
calledbicommutant.

17A von Neumann algebraM on H is a factor iff its center
Z(M) = M ∩ M′ is trivial, i.e. if Z(M) = C1.

18KMS stands for Kubo-Martin-Schwinger.
19Cf. [18, p.81]. Ifβ = 0, we setDβ = R.

Definition 2 (cf. [38, 39]) Let (O, τ) be a C∗-
dynamical system, and letω0 ∈ E(O) be a given
reference state. Then, the “NESS associated withω0

andτ ” are defined to be the limit points in the weak-∗
topology of the net20

1

T

∫ T

0
dt ω0 ◦ τ

t, T > 0. (1)

The set of NESS associated withω0 and τ is denoted
byΣ+(ω0, τ).21

One may wonder to what extent the setΣ+(ω0, τ) de-
pends on the reference stateω0. On physical grounds,
one expects that it remains unchanged ifω0 is replaced
by someω′

0 which is not too far fromω0, and if we as-
sumeω0 to be sufficiently regular.

Theorem 3 (cf. [7]) Let (O, τ) be a C∗-dynamical
system, and letω0 ∈ E(O) be a factor state which
is “weakly asymptotic abelian in mean”.22 Then,

Σ+(ω′
0, τ) = Σ+(ω0, τ) if ω′

0 ∈ Nω0.

Next, we turn our attention to the construction of
NESS. As described in the Introduction, we will make
use of the time dependent scattering method. The cen-
tral object of this approach is the so-calledMøller
morphism, the analog in theC∗-algebraic setting of
the wave operator in Hilbert space scattering theory.
To do so, let(O, τ0) be aC∗-dynamical system and
V = V ∗ ∈ O a so-calledlocal perturbation. W.r.t.
such a perturbationV , we define the perturbedC∗-

20For the directed system withT in the index set(0,∞) (and
ordering “≤”).

21Σ+(ω0, τ ) is a non-empty, weak-∗ compact subset ofE(O)
whose elements areτ -invariant, i.e.

ω ◦ τ t = ω.

In general, for aC∗-dynamical system(O, τ ), we denote by
E(O, τ ) theτ -invariant states inE(O).

22I.e. limT→∞

R T

0
dt ω′

0([τ
t(A), B])/T = 0 for all ω′

0 ∈
Nω0

.
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dynamicsτ t ∈ Aut(O) by Dyson’s series,

τ t(A) = τ t
0(A)

+
∑

n≥1

in





n−1
∏

j=0

∫ tj

0
dtj+1



 adn(tn, ..., t1, t), (2)

where we sett0 = t and make use of the definition

ad1(t1, t) = [τ t1
0 (V ), τ t

0(A)],

adn(tn, ..., t1, t) = [τ tn
0 (V ), adn−1(tn−1, ..., t1, t)].

The following theorem formulates the algebraic ana-
log of Cook’s criterionin Hilbert space scattering the-
ory (cf. [43, p.84]).

Theorem 4 (cf. [37, 7]) Let theC∗-dynamical system
(O, τ) be “asymptotically integrable w.r.t. the local
perturbationV ” generating the perturbed dynamics
τ , i.e. assume that

∫ ∞

0
dt ‖[V, τ t(A)]‖ <∞

for all A in a dense subset ofO. Then,

γ+ = s − lim
t→∞

τ−t
0 ◦ τ t (3)

exists and defines a monomorphism23 which is called
the “Møller morphism” onO.

As soon as we are assured, in one way or another, of
the existence of the Møller morphism (as it will be the
case in the models treated below), the following basic
observation for aτ0-invariant reference stateω0 imme-
diately leads to the construction of the unique NESS.

Theorem 5 (cf. [7]) Let (O, τ0) be a C∗-dynamical
system,ω0 ∈ E(O, τ0) a reference state, andV a local
perturbation. Then, if the Møller morphismγ+ exists,
there exists a unique NESSω+ ∈ Σ+(ω0, τ) of the
form

ω+ = ω0 ◦ γ+.

23I.e. an injective homomorphism. More precisely,γ+ is an
isometric∗-endomorphism which is, in general, not surjective.

Proof We note that, due to theτ0-invariance ofω0,

1

T

∫ T

0
dt ω0 ◦ τ

t =
1

T

∫ T

0
dt ω0 ◦ (τ−t

0 ◦ τ t),

where on the left hand side we have the definition of
a NESS from (1), and, on the right hand side, we use
(3). 2

Entropy production rate

The meanentropy production rate(EPR) is defined
with the help of the concept of the so-calledrelative
entropy. On the analogy of the relative entropy of two
measures24, the relative entropy of a density matrix25

ρ′ on a Hilbert spaceH w.r.t. the density matrixρ is
defined as

Ent(ρ′|ρ) = tr(ρ′(log ρ− log ρ′)).

It has the two properties (cf. [18, p.268])

Ent(ρ′|ρ) ≤ 0, Ent(ρ′|ρ) = 0 iff ρ′ = ρ.

In order to define the relative entropy for two more
general states inE(O), one makes use of therela-
tive modular operatorfrom Tomita-Takesaki’s mod-
ular theory of von Neumann algebras.26 It turns out
that, in this generalization, the foregoing two proper-
ties still hold.

The following theorem serves as motivation for the
subsequent definition of the mean EPR.

24For a probability measureµ′ (on some convex compact subset
of the Euclidean space) which is absolutely continuous w.r.t. the
Lebesgue measureµ (or for more general Radon measures), the
relative entropy ofµ′ w.r.t. µ is defined by (cf. [18, p.267])

Ent(µ′|µ) = −µ′

„

log
dµ′

dµ

«

.

25A density matrix(or statistical operator) is anA ∈ L(H) s.t.

A ≥ 0, A ∈ L1(H), trA = 1.

26Cf. [18, p.276] for the case of so-called faithful normal states.
A stateω ∈ E(O) is calledfaithful iff ω(A∗A) > 0 for all non-
zeroA ∈ O.
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Theorem 6 (cf. [26]) Let (O, τ0) be aC∗-dynamical
system, ω0 ∈ E(O, τ0) a modular state for a
C∗-dynamicsσt

ω0
with generator δω0

27, and V ∈
dom (δω0) a local perturbation generating the per-
turbedC∗-dynamicsτ . Then, for anyω′

0 ∈ Nω0,

1

T

∫ T

0
dt ω′

0(τ
t(δω0(V ))) =

−
Ent(ω′

0 ◦ τ
T |ω0) − Ent(ω′

0|ω0)

T
.

The right hand side describes the mean rate at which
the entropy is pumped out of the system by the per-
turbationV . Taking (1) into account, we make the
following definition.

Definition 7 (cf. [26]) Let the setting be as in Theo-
rem 6. Then, the “mean EPR in the NESSω+ ∈
Σ+(ω′

0, τ)” is defined by

Ep(ω+) = ω+(σV ),

whereσV = δω0(V ) is called the “EPR observable”.

Remark 8Due to the two properties of the relative en-
tropy mentioned above, it immediately follows that,
for a NESSω+ ∈ Σ+(ω0, τ), we have

Ep(ω+) ≥ 0.

3 Open systems

The termopen systemdesignates a special instance of
the class of non-equilibrium systems described in Sec-
tion 2 for which theC∗-algebra of observablesO car-
ries an additional factorization structure,

O = OS ⊗OR.

27δω0
is a so-called∗-derivation, i.e. it is a linear operator onO

whose domaindom (δω0
) is a∗-subalgebra ofO. It has the prop-

ertiesδω0
(A)∗ = δω0

(A∗), δω0
(AB) = δω0

(A)B + Aδω0
(B)

(theLeibniz rule) for all A,B ∈ dom (δω0
), and

σt
ω0

= etδω0 .

Bringing such a structure into use is motivated by
the physical situation in which a (confined)sampleS
is brought in contact with an (extended)reservoir28

R. Both the sample and the reservoir are described
byC∗-dynamical systems(OS , τS) and(OR, τR), re-
spectively, and theC∗-dynamicsτ t

0 from Section 2,
now called theuncoupleddynamics, describes the time
evolution of the total uncoupled system,

τ t
0 = τ t

S ⊗ τ t
R.

Moreover, the reference stateω0 ∈ E(O, τ0) is chosen
to factorize accordingly,

ω0 = ωS ⊗ ωR.

In order to be able to model the physically important
situation of an environment supporting a temperature
gradient which, eventually, may lead to a heat flux
across the sample, we further introduce an additional
subreservoir structure, i.e. we assumeR to consist of
several partsR1, ...,RM , cf. Figure 1. Thej-th reser-
voir Rj is described by aC∗-subalgebraORj

⊆ OR

with the properties that

τ t
R(ORj

) ⊆ ORj
, ORj

∩ ORk
= C1,

for all k 6= j, andOR is assumed to be generated
by OR1 , ...,ORM

.29 The sampleS is coupled to the
reservoirRj through a junctionVj = V ∗

j ∈ OS⊗ORj
,

and the total coupling is

V =
∑

j

Vj.

28 Also calledenvironment. From a physical point of view, we
are not interested in the nature of this reservoir whose onlytask is
to guarantee a sufficient heat (or charge or matter etc.) supply in
an optimally regular way.

29In the sense thatOR is such that it is the smallestC∗-algebra
containing all the subreservoirsORj

. An often encountered spe-
cial case of this set-up is the following.Rj is described by aC∗-
dynamical system(ORj

, τ t
Rj

) with reference stateωRj
, and the

total reservoir has the structure (cf. Section 4)

OR = ⊗j ORj
, τ t

R = ⊗jτ
t
Rj
, ωR = ⊗j ωRj

.

Note that here, contrary to the more general case, we have
[ORj

,ORk
] = 0.
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Fluxes and entropy production rate

Let us assume for a moment that the sample is a fi-
nite dimensional quantum system30 specified by the
HamiltonianHS ∈ OS which generates the time evo-
lution τ t

S ∈ Aut(OS). Since the total heat flux out
of the reservoirR into the sampleS produced by the
coupledC∗-dynamicsτ t is given by31

d

dt
τ t(HS + V ) =

∑

j

τ t(δRj
(Vj)),

we identify the heat flux out ofRj into S with

Φj = δRj
(Vj).

In order to define the mean EPR, we assume, in ad-
dition, that the stateωR ∈ E(OR, τR) is modular for
someC∗-dynamicsσt

R ∈ Aut(OR) with

σt
R(ORj

) ⊆ ORj
,

and thatVj ∈ dom (δ′Rj
).32 Then, ifωS ∈ E(OS , τS)

is the unique(τS , βS = 0)-KMS state33, the EPR ob-
servable readsσV =

∑

j δ
′
Rj

(Vj). In particular, if
we assumeωRj

∈ E(ORj
, τRj

) to be the(τRj
, βj)-

KMS state34, thenωR is modular for theC∗-dynamics
σt
R defined byσt

Rj
= τ

−βjt
Rj

with generatorsδ′Rj
=

−βj δRj
. Hence,

σV = −
∑

j

βjΦj,

and, for a NESSω+ ∈ Σ+(ω0, τ), we get the mean
EPR

Ep(ω+) = −
∑

j

βj ω+(Φj). (4)

This equation relates the mean EPR to the mean heat
fluxes across the sample.35

30I.e.OS = L(HS) anddim HS <∞.
31δRj

denotes the generator of the restrictionτ t
Rj

= τ t
R↾ORj

.
32δ′Rj

is the generator of the restrictionσt
Rj

= σt
R↾ORj

.
33This is thetrace stateωS(·) = tr(·)/dim HS (also called

chaoticstate orcentralstate).
34With ωRj

= ωR↾ORj
.

35The mean EPR is independent ofωS if ωS is faithful (cf.
[27]).

Remark 9Note that the first and second law of ther-
modynamics trivially hold in the foregoing set-up.

Remark 10Later on, we will also consider matter and
charge fluxes for non-finite samples in quasi-free sys-
tems (cf. Section 5).

In Section 5, using scattering theory, we will derive
expressions for the mean EPR in the NESS of the XY
chain and the EBB model. These NESS will be con-
structed in Section 4.

Linear response theory

We know from phenomenological non-equilibrium
thermodynamics that the entropy production can be
written as a bilinear form in the thermodynamic forces
xj and their conjugate fluxesφj ,36

Ep =
∑

j

xjφj .

Since each flux can depend in a complicated way on
the applied thermodynamic forces,

φj = φj(x1, ..., xM ),

linear response theory restricts its focus on the regime
in which the thermodynamic forces driving the system
out of equilibrium are so small that the dependence of
the fluxes upon the forces may be well described in
linear approximation. In other words, linear response
theory is first order perturbation theory w.r.t. the ther-
modynamic forces. If the reservoirs of the preceding
subsection are in thermal equilibrium at inverse tem-
peraturesβ1, ..., βM (sufficiently close to some refer-
ence temperatureβeq, say), then, the thermodynamic
forces may be identified with

xj = βeq − βj

generating the fluxes37

φj = ω+(Φj).

36The thermodynamic forces are also calledaffinities.
37This is due to the fact that, using energy conservation (cf. Re-

mark 9), we can writeEp(ω+) =
P

j(βeq − βj)ω+(Φj).
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Now, the so-calledkinetic coefficientsare defined to be
the coefficients of the linearization of the fluxes,

Lij =
∂

∂xj
ω+(Φi)

∣

∣

∣

x=0
,

wherex = (x1, ..., xn) denotes the collection of all
thermodynamic forces. Linear response theory studies
the properties of these kinetic coefficients. First, for
time reversal invariant open systems38, the Onsager
reciprocity relations(ORR) reveal their symmetry,

Lij = Lji.

Second, again for open TRI systems, theGreen-Kubo
fluctuation-dissipation formula(GKF) expresses them
by the integrated current-current correlations in equi-
librium,

Lij =
1

2

∫ ∞

−∞
dt ωeq(τ

t(Φi)Φj),

whereωeq ∈ E(O) denotes the(τ, βeq)-KMS state
(i.e. the NESSω+ for x = 0). Finally, third, thecen-
tral limit theoremrelates them to the statistics of the
current fluctuations in equilibrium (cf. [25]).

In Section 6, we establish the ORR and the GFK in the
EBB model.

Weak coupling theory

Since, from a physical point of view, we are interested
in the properties of the sample only (see footnote 28),
we can make use of the so-calledweak coupling theory
(or van Hove theory) which integrates out the degrees
of freedom of the reservoirs by means of the projection

PS(A⊗B) = AωR(B)

38 A bijective antilinear involutionr onO is called atime rever-
sal iff r(HS) = HS , r(Vj) = Vj , andr ◦ τ t

Rj
= τ−t

Rj
◦ r. Hence,

r ◦ τ t
0 = τ−t

0 ◦ r, r ◦ τ t = τ−t ◦ r.

An open system with reference stateω is calledtime reversal in-
variant (TRI) iff there is a time reversalr s.t.ω(r(A)) = ω(A∗).

for A ∈ OS andB ∈ OR. If the coupling strength is
parameterized by some realλ, then, on the time scale
t/λ2, the reduced dynamics of the sample

T t
λ(A) = PS(τ−t

0 ◦ τ t(A⊗ 1R))

is governed by the so-calledDavies generatorKH in
the Heisenberg picture (cf. [21]),

lim
λ→0

T
t/λ2

λ (A) = etKH(A).

Using the Davies generatorKH, we describe the
open system in second order perturbation theory inλ.
What concerns thermodynamics in the weak coupling
limit39, we have the following. Under some effective
coupling and non-degeneracy conditions (cf. Section
7), there exists a unique FGR NESSωS+ ∈ E(OS)
which has the property that

ωS+(A) = lim
t→∞

ωS(etKH(A)) (5)

for anyωS ∈ E(OS).40 With the FGR heat flux ob-
servableΦfgr,j = KH,j(HS)41 and the FGR EPR ob-
servableσfgr = −

∑

j βjΦfgr,j, the first and second
law of FGR thermodynamics hold, i.e. energy is con-
served,

∑

j ωS+(Φfgr,j) = 0, and the mean FGR EPR
Epfgr(ωS+) = ωS+(σfgr) satisfies

Epfgr(ωS+) ≥ 0.

In those models which allow for a rigorous relation
of the microscopic to the FGR thermodynamics in the
sense of

Ep(ω+) = λ2 Epfgr(ωS+) + O(λ3), (6)

the question about the strict positivity ofEp(ω+) for
sufficiently small coupling reduces to the much sim-
pler question about the strict positivity ofEpfgr(ωS+).

39We call itFermi Golden Rule(FGR) thermodynamics in [7].
40Cf. [32] for a detailed description of all of the following.
41The Davies generatorKH can be written as

KH =
X

j

KH,j ,

whereKH,j is the Davies generator forS coupled toRj only.
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In Section 7, we establish a simple algebraic criterion
which ensures the strict positivity ofEpfgr(ωS+). The
connection (6) for the SEBB model is established in
[7].42

4 Non-equilibrium steady states

In this section, using the time dependentC∗-scattering
approach outlined in Section 2, we start off with the
construction of the NESS in the motivational example
of the XY chain. In a second part, we extend this con-
sideration to the more general EBB model.

XY chain

The XY chain is a special instance of the class of
Heisenberg spin models on the discrete lineZ. Let
us first very briefly explain the framework of spin
systems. Eventually, we will end up with quasi-free
fermions. In the subsequent discussion of the EBB
model, we directly proceed from the level of a quasi-
free system.

The kinematic structure of the XY chain consists
of a quasi-local uniformly hyperfinite algebra43 con-
structed over the finite subsets ofZ, i.e. to each point
x ∈ Z is associated a two-dimensional Hilbert space
H{x}

44, to each finite subsetΛ ⊂ Z the Hilbert space
HΛ = ⊗x∈ΛH{x}, and theC∗-algebra of local ob-
servables is defined to beSΛ = L(HΛ). For a finite
or infinite subsetZ ⊂ Z, theC∗-completion of the
∗-algebra∪Λ⊂ZSΛ is the infinite tensor productC∗-
algebra of observables overZ.45

The dynamics of the XY chain is specified by the fol-

42The ORR and the GKF of linear response theory in FGR ther-
modynamics are shown to hold in [32].

43Such aC∗-algebra is generated by an increasing net ofC∗-
subalgebras indexed by a directed set possessing an orthogonal-
ity relation (cf. [18, 40]). In applications, the index set typically
consists of bounded subsets of the configuration space ordered by
inclusion. An element of the net is then interpreted as the algebra
of physical observables for a subsystem localized in that subset.

44For spins with quantum numbers = 1/2.
45For the infinite tensor product ofC∗-algebras, cf. [40, p.70].

lowing interactionΨ 46 defined to be zero on all finite
subsets ofZ but on the following ones,

Ψ({x}) = 2λσ
(x)
3 ,

Ψ({x, x+ 1}) = (1+γ)σ
(x)
1 σ

(x+1)
1

+(1−γ)σ
(x)
2 σ

(x+1)
2 ,

wherex ∈ Z.47 The parameterγ ∈ (−1, 1) denotes
theanisotropyandλ ∈ R stands for themagnetic field
in the XY chain.48

Remark 11Ψ(X) represents the interaction energy of
the particles inX, and, since the particles are consid-
ered to be attached to the lattice sites, the total inter-
action energyHΛ in Λ is the interaction energy of all
subsystems.

For any finiteΛ ⊂ Z, the so-calledlocal XY Hamilto-
nian is defined to be

HΛ = −
1

4

∑

X⊆Λ

Ψ(X),

generating thelocal dynamics

τ t
Λ(A) = eitHΛAe−itHΛ .

SinceΨ has finite range49, the thermodynamic limit50

τ t(A) = lim
Λ→∞

τ t
Λ(A)

exists in norm and yields a strongly continuous one-
parameter groupτ t ∈ Aut(S) (cf. [18, p.247]). The

46An interactionΨ is a map from the finite subsetsX ⊂ Z into
the self-adjoint elements ofS = SZ s.t.Ψ(X) ∈ SX .

47The Pauli basis ofC2×2 is defined byσ0 = 1, and

σ1 =

»

0 1
1 0

–

, σ2 =

»

0 −i
i 0

–

, σ3 =

»

1 0
0 −1

–

.

48Since the discovery of their ideal thermal conductivity in non-
equilibrium situations as described in Section 3, such (quasi-)one-
dimensionals = 1/2 Heisenberg systems have been intensively
investigated experimentally and theoretically (cf. [41, 42] and [20,
44], respectively).

49Ψ hasfinite rangeiff there is ad ≥ 1 s.t. Ψ(X) = 0 for all
finiteX with diametersupx,x′∈X |x− x′| > d.

50Λ → ∞ means thatΛ eventually contains any finiteX ⊂ Z.
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C∗-dynamical system(S, τ) describes theinfinite XY
chain.

In order to set up a non-equilibrium configuration in
the sense of the paradigmatic open systems from Sec-
tion 3, we couple a finite cutoutZS of Z between−x0

andx0 to the two remaining infinite partsZL andZR

to its left and right which will act as thermal reservoirs.
Using (2), we define the uncoupledC∗-dynamical sys-
tem (S, τ0), where the local perturbation is the bond-
coupling

V = −
1

4
Ψ({x0, x0 + 1})

−
1

4
Ψ({−(x0 + 1),−x0}). (7)

By construction,V decouples the XY dynamicsτ t in
the sense that

τ t
0 = τ t

L ⊗ τ t
S ⊗ τ t

R

respects the factorization

S = SL ⊗ SS ⊗ SR,

whereSL = SZL
and analogously forS andR. As

reference stateω0 ∈ E(S) in the construction of the
NESS, we choose

ω0 = ωβL

L ⊗ ωS ⊗ ωβR

R , (8)

whereωβL

L is the unique(τL, βL)-KMS state onSL

and analogously forωβR

R . Moreover,ωS stands for the
chaotic state onSS (cf. footnote 33).

For computational convenience, we will leave the fore-
going spin picture and enter the fermionic description
established by the well-known Jordan-Wigner trans-
formation (cf. [30]),51

ax = TS(x)(σ
(x)
1 − iσ

(x)
2 )/2, (9)

whereS(x) is defined byS(x) = σ
(1)
3 . . . σ

(x−1)
3 if

x ≥ 2, S(1) = 1, andS(x) = σ
(x)
3 . . . σ

(0)
3 if x ≤ 0.

51Since we are given a two-sided infinite chain, we use the
Jordan-Wigner transformation (devised for the one-sided infinite
case only) in its generalized form (cf. [1] and footnote 53).

Moreover,T stems from theC∗ crossed product exten-
sion by someZ2-action (cf. footnote 53). We denote
by A(h) the CAR algebra52 overh = ℓ2(Z) generated
by the Jordan-Wigner fermionsax anda∗x.53

Remark 12The heuristic equivalence induced by the
Jordan-Wigner transformation is rigorous on the even
part of the corresponding algebras. However, the
equivalence breaks down if one tries to extend it to
the whole algebra (cf. (11) in footnote 53).54

After the Jordan-Wigner transformation, the interac-
tion is quadratic in the fermions,

Ψ({x}) = 2λ (2a∗xax − 1), (12)

Ψ({x, x+ 1}) = −2 (a∗xax+1 + a∗x+1ax)

−2γ(a∗xa
∗
x+1 + ax+1ax). (13)

Using the CAR (10), we can recastA(h) into the form
of a so-calledself-dualCAR algebra over(h⊕2, J)55

52The canonical anticommutation relations(CAR) algebra
A(H) over the complex Hilbert spaceH is the completion in the
uniqueC∗-norm of the quotient of the free∗-algebra generated by
the symbolsa∗(f) anda(f) with f ∈ H and the identity1, by the
two-sided∗-algebra generated by the relationsa∗(αf + βg) =
αa∗(f) + βa∗(g), a(f)∗ = a∗(f), {a∗(f), a∗(g)} = 0, and

{a(f), a(g)} = 0, {a∗(f), a(g)} = (g, f)1, (10)

where{A,B} = AB +BA is the so-calledanticommutator. We
will use the same notation for the abstract CAR algebra and its
Fock representation (cf. [18, p.6]).

53 The construction in [1] goes as follows. LetO be theC∗-
algebra generated byS and an elementT satisfyingT = T ∗,
T 2 = 1, and TA = θ−(A)T , whereθ− ∈ Aut(S) is de-
fined by θ−(σ

(x)
i ) = −σ(x)

i if x ≤ 0 and θ−(σ
(x)
i ) = σ

(x)
i

if x > 0 for i = 1, 2, and θ−(σ
(x)
3 ) = σ

(x)
3 for all x ∈ Z.

Moreover, defineθ ∈ Aut(S) by θ(σ(x)
i ) = −σ(x)

i for i = 1, 2

and θ(σ(x)
3 ) = σ

(x)
3 for all x ∈ Z. Hence,S = S+ + S−,

where S± = {A ∈ S : θ(A) = ±A}, and S+ is the
evenC∗-subalgebra ofS. Defining θ(T ) = T , we can write
A(h) = A(h)+ + A(h)−, and, hence,

S+ = A(h)+, S− = TA(h)−. (11)

SinceΨ(X) ∈ S+, S± are invariant underτ t
0 andτ t which im-

pliesω0(S−) = 0. Hence,(S+, τ ) suffices for our purposes.
54For an interesting consequence of this fact, cf. [34].
55In [2], the self-dual CAR algebraA(H, J) over the Hilbert
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by using the complex linear mappingB : h⊕2 → L(h),

B(f) = a∗(f1) + a(f̄2),

for f = [f1, f2] ∈ h⊕2. Moreover, with the antiunitary
involution J onh⊕2 defined by

J [f1, f2] = [f̄2, f̄1],

these B(f) satisfy the relations (14). With the
help of the “self-dual second quantization”B(k) =
∑

j B(fj)B
∗(gj), where fj, gj ∈ h and k =

∑

j fj(gj , ·) ∈ L0(h)56, the local Hamiltonian
can be expressed asHΛ = B(hΛ) with hΛ =
∑

X⊆Λ ψ(X) ∈ L0(H).57 SinceeB(k)B(f)e−B(k) =

B(ekf) in analogy to the usual second quantization58,
we arrive atτ t

Λ(B(f)) = B(eithΛf). In the thermody-
namic limit, this leads to

τ t(B(f)) = B(eithf), (15)

where the one-particle Hamiltonianh is a multiplica-
tion operator in the Fourier picture59 which acts on
ĥ⊕2 by multiplication with the function60

h(eiξ) = (cos ξ − λ) ⊗ σ3 + γ sin ξ ⊗ σ2. (16)

Analogously, the one-particle Hamiltonian

h0 = h− v = hL ⊕ hS ⊕ hR (17)

spaceH with involution J is defined similarly to footnote 52 for
symbolsB(f) satisfying linearity and the relations

{B∗(f), B(g)} = (f, g)1, B(Jf) = B∗(f). (14)

56L0(H) denotes the operators of finite rank onH.
57ψ(X) can be read off from (12) and (13),

ψ({x}) = −λ|x〉〈x| ⊗ σ3,

ψ({x, x+ 1}) = cx ⊗ σ3 − γsx ⊗ σ2,

with cx = (|x〉〈x+ 1| + |x+ 1〉〈x|)/2 andsx = (|x〉〈x+ 1| −
|x+ 1〉〈x|)/(2i) (usingh⊕ ≃ h ⊗ C

2).
58In reality, for this relation to hold, we have to imposeJk =

−k∗J which is satisfied byψ(X).
59With conventionϕ̂(eiξ) =

P

x∈Z
ϕ(x) eixξ andĥ = L2(T).

60Sinceh(eiξ) is not diagonal forγ 6= 0, the dynamicsτ t does
not leave the first (and the second) factor ofĥ⊕2 invariant. That’s
why the unified view in terms of a self-dual CAR algebra is useful.

with v =−(ψ({x0, x0+1})+ψ({−(x0+1),−x0}))/4
generates the decoupled dynamics61

τ t
0(B(f)) = B(eith0f). (18)

Let us now turn to the reference stateω0 from (8). This
state is an example of a so-called quasi-free state. A
stateω ∈ E(A(h⊕2, J)) is calledquasi-freeiff it van-
ishes on the odd polynomials inB(f),

ω(B(f1) . . . B(f2n+1)) = 0,

and iff it is a Pfaffian62 on the even polynomials,

ω(B(f1) . . . B(f2n)) = pf Ω(n), (20)

whereΩ(n) ∈ C
2n×2n is given by

Ω(n)kl =







ω(B(fk)B(fl)), k < l
0, k = l

−ω(B(fl)B(fk)), k > l
. (21)

Hence, a quasi-free state is completely characterized
by its two-point functionω(B∗(f)B(g)) which, in
turn, determines an operator̺ ∈ L(h⊕2) by

ω(B∗(f)B(g)) = (f, ̺g). (22)

Moreover, due to (14),̺ has the properties63

0 ≤ ̺ = ̺∗ ≤ 1, ̺+ J̺J = 1. (23)

For any stateω (quasi-free or not), we call the operator
̺ i n (23) thedensityof ω. Since the reference stateω0

from (8) is the product of quasi-free KMS states, it is
a quasi-free state with density

̺0 = (1 + e−k0)−1,

61V in (7) is the “self-dual second quantization” ofv.
62The Pfaffian of a matrixA ∈ C

2n×2n is defined by

pfA =
X

π

sign(π)
n

Y

j=1

Aπ(2j−1),π(2j), (19)

with the sum running over all pairings of the set{1, 2, ..., 2n}, i.e.
the permutationsπ in the permutation groupS2n which satisfy
π(2j − 1) < π(2j) andπ(2j − 1) < π(2j + 1).

63Conversely, for any̺ ∈ L(h⊕2) satisfying (23), there is a
unique quasi-free stateω ∈ E(A(h⊕2, J)) s.t. (22) holds (cf. [2]).
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wherek0 = βLhL ⊕ 0 ⊕ βRhR.64

Remark 13In the EBB model described below, we
start off at the point where we are now, i.e. we are
directly looking at quasi-free fermionic systems.65

Next, as described in Section 2, our goal is to construct
the Møller morphismγ+ ∈ Aut(A(h⊕2, J)),

γ+ = s − lim
t→∞

τ−t
0 ◦ τ t.

Since the decoupled and the coupled time evolution
groupsτ t

0 and τ t, respectively, are given by Bogoli-
ubov ∗-automorphisms66, the problem of construct-
ing γ+ reduces to the question about the existence (and
completeness) of the Hilbert space wave operatorsW±

on the one-particle spaceh⊕2 of the self-dual Jordan-
Wigner fermions,67

W± = s − lim
t→±∞

eithe−ith01ac(h0). (24)

Taking advantage of this reduction to a pure one-
particle Hilbert space scattering problem, we can
prove existence and uniqueness of a quasi-free NESS
and identify its density with the help of the wave oper-
ators (24).

Theorem 14 (cf. [4]) Let (A(h⊕2, J), τ0) be theC∗-
dynamical system of the uncoupled XY chain with the
local bond-coupling perturbationV from (7). If the
reference stateω0 ∈ E(A(h⊕2, J), τ0) is given by
(8), then there exists a unique quasi-free NESSω+ ∈
Σ+(ω0, τ) with density

̺+ = W−̺0W
∗
−. (25)

64More precisely, due to footnote 63, it is the restriction ofω0

to A(h)+ ≃ A(h⊕2, J)+ which extends to the quasi-free state on
A(h⊕2, J) with density̺0.

65Up to the fact that we use the usual CAR algebra description
and not the self-dual one.

66A ∗-automorphism onA(H, J) of the form

τU (B(f)) = B(Uf),

whereU is a unitary operator onH satisfying[U, J ] = 0, is called
Bogoliubov∗-automorphism (cf. [2]).

671ac(A) denotes the projection onto the absolutely continuous
subspaceHac(A) of the operatorA onH. For general scattering
theory, cf. [43] for example.

Proof Since τ t
0, τ

t ∈ Aut(A(h⊕2, J)) are Bogoli-
ubov∗-automorphisms, we have

τ−t
0 ◦ τ t(B(f)) = B(e−ith0eithf),

and therefore, sinceω0 ◦ τ
−t
0 = ω0,

ω0 ◦ τ
t(B∗(f)B(g)) =

ω0(B
∗(e−ith0eithf)B(e−ith0eithg)).

Hence, we are led to study the wave operatorW− ∈
L(h⊕2) from (24). In order to address this question,
we appeal to scattering theory for perturbations of
trace class type.68 Indeed, the decoupling perturba-
tion v given after (17) is of finite rank,v ∈ L0(h⊕2),
and, hence, the classical Kato-Rosenblum theorem im-
plies thatW± exist and are complete (cf. [43, p.193]).
Moreover, due to the fact thath is given in the Fourier
picture by the multiplication operatorh(eiξ) from (16),
its spectrum is purely absolutely continuous,69

specsc(h) = ∅, specpp(h) = ∅. (26)

Since the mapf 7→ B(f) is continuous, we get

γ(B(f)) = B(W ∗
−f).

Thus, the NESS has the asserted density,

ω+(B∗(f)B(g)) = ω0 ◦ γ+(B∗(f)B(g))

= ω0(B
∗(W ∗

−f)B(W ∗
−g))

= (f,W−̺0W
∗
−g).

2

Remark 15This is the main argument which will
reappear in the context of the more general EBB model
below.

For the case of the XY chain, we can evaluate the
density in (25). Letβ = (βR + βL)/2 and δ =
(βR − βL)/2.

68Also calledKato-Birman theory(cf. [43]).
69specsc(A), specac(A), andspecpp(A) denote the spectra of

the restriction of the operatorA onH to the singular continuous, to
the absolutely continuous, and to the pure point subspace,Hsc(A),
Hac(A), andHpp(A), respectively.
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Theorem 16 (cf. [4]) The density̺ + ∈ L(h⊕2) of the
NESSω+ looks like

̺+ = (1 + e−k+)−1, (27)

wherek+ can be expressed with the help of the asymp-
totic velocityv− of the dynamics generated byh,

k+ = (β − δ sign v−)h.

Proof We write W ∗
− = iLW

∗
L + iRW

∗
R, where

W ∗
L,R = s − limt→∞ e−ithL,Ri∗L,Reith are the partial

wave operators which project on the left and right
reservoirs.70 Hence, since the asymptotic projections
PL,R = s − limt→∞ e−ithiL,Ri

∗
L,Reith can be written

asPL,R = WL,RW
∗
L,R, we find that̺ + has the form

given in (27) with71

k+ = (β − δ(PR − PL))h.

Moreover, since the asymptotic velocityv− =
limt→∞ e−ithxeith exists72, we have73

PR − PL = sign v−.

Finally, using the form ofh from (16), one can com-
putev− explicitly. 2

Remark 17The Fourier transformed densitŷ̺+ ∈
L(ĥ⊕2) is an operator which acts by multiplication
with the function

ˆ̺+(eiξ) =
(

1 + e−(β h(eiξ)−δ k(eiξ))
)−1

, (28)

where

h(eiξ) = (cos ξ − λ) ⊗ σ3 + γ sin ξ ⊗ σ2,

k(eiξ) = sign(κ(eiξ))µ(eiξ) ⊗ σ0,

κ(eiξ) = 2λ sin ξ − (1 − γ2) sin 2ξ,

µ(eiξ) = ((cos ξ − λ)2 + γ2 sin2 ξ)1/2.

70iL,R denote the natural injectionsℓ2(ZL,R)⊕2 → h⊕2.
71We use basic facts from Kato-Birman theory and [22] only.
72In the strong resolvent sense (cf. [36, p.284]).
73For self-adjoint operatorsA andAn, one has

s − lim f(An) = f(s − res − limAn)

for f of characteristic function type (cf. [36, p.290]).

The NESS of Theorem 14 has the following proper-
ties.

Theorem 18 (cf. [4]) The NESSω+ of the XY chain is
(1) quasi-free,
(2) independent ofx0,
(3) translation invariant,
(4) modular,
(5) a factor state,
(6) and a(τ, β)-KMS state ifβL = βR = β.

Proof (1) is contained in Theorem 14. Sincê̺+ ∈
L(ĥ⊕2) acts by multiplication witĥ̺ +(eiξ) of the ex-
plicit form (28), we get(2), (3), and

specpp(̺+) = ∅.

Hence, using [2], the non-existence of the eigenvalue
0 and1/2 implies (4) and (5), respectively. Finally,
it has been shown in [1] thatω+ is the unique(τ, β)-
KMS state ifβL = βR = β which implies(6). 2

Remark 19For βL 6= βR, the NESSω+ is not only
not a KMS state w.r.t. the dynamicsτ t (for any β),
but there exists noC∗-dynamics on the Pauli algebra
S w.r.t. whichω+ is a KMS state (cf. [34]).

EBB model

As described in the Introduction, we now turn to mod-
els of more general type which we call theelectronic
black box(EBB) model (cf. [9]). The so-calledsim-
ple EBB (SEBB) is a special case of the more general
EBB model. For the SEBB model, explicit computa-
tions have been done in [7] (we will essentially restrict
ourselves to some remarks on the SEBB model, cf. [7]
for more details).

The EBB model describes a gas of noninteracting
fermions which entirely fills up a spatially confined
sampleS and a finite numberM of spatially extended
reservoirsRj to which the sample is coupled by junc-
tions. As it has been shortly explained in the case of
the XY chain in the foregoing subsection, in order to
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set up such an ideal system, we only have to spec-
ify the one-particle Hilbert spaces and the one-particle
Hamiltonians of the sample and the reservoirs. LethS
be the one-particle Hilbert space of the sample with
HamiltonianhS andhj the one-particle Hilbert space
of reservoir numberj with Hamiltonianhj . The kine-
matics of the EBB model is then given by the total
one-particle Hilbert space

h = hS ⊕ hR, hR = ⊕jhj ,

andA(h) denotes theC∗-algebra overh containing the
observables.

Remark 20In the SEBB model, one hasdimhS = 1
(cf. [7]).

As in the XY chain, the decoupled and the coupled dy-
namics of the EBB model are specified to be Bogoli-
ubov∗-automorphismsτ t

0, τ
t ∈ Aut(A(h)) generated

by the one-particle Hamiltonian of the decoupled sys-
tem,

h0 = hS ⊕ hR, hR = ⊕jhj ,

and by some one-particle Hamiltonianh of the cou-
pled system (compare with (15) and (18))74,

τ t
0(a(f)) = a(eith0f), τ t(a(f)) = a(eithf).

In order to apply the scattering theory for perturbations
of trace class type, we make the following assump-
tions.

Assumption 21 (cf. [9])
(H1) h0 andh are bounded from below
(H2) rp − rp

0 ∈ L1(h) for a p ∈ {−1} ∪ N
75

(H3) specsc(h) = ∅
(H4) specess(hS) = ∅ 76

(H5) ran (h− h0) ⊆ ranh0

74Note thatτ t
0 , τ

t ∈ Aut(A(h)) respect the involution∗.
75r(z) = (h−z)−1 denotes the resolvent ofh (and similarly for

h0). (H2) is supposed to hold on one point in the intersection of
the corresponding resolvent sets (then, it holds on all suchpoints).

76specess(A) denotes the essential spectrum of the operatorA.

For some cases we also assume time reversal invari-
ance (cf. footnote 38).

Assumption 22 (cf. [9])
(TRI) There is an involutionj on h s.t. jh0 = h0j and
jh = hj.77

Similarly to Theorem 14 for the XY chain, we have
the following theorem for the EBB model.

Theorem 23 (cf. [9]) Assume (H1)–(H3), and let
ω0 ∈ E(A(h), τ0) be a gauge invariant78 quasi-free79

reference state with density̺0. Then, there exists a
unique NESSω+ ∈ Σ+(A(h), τ) whose restriction
to A(hac(h)) is the gauge invariant quasi-free state
with densityW−̺0W

∗
−. Moreover, ifc ∈ L1(h), then

ω+(dΓ(c)) = tr(̺+c) with80

̺+ = W−̺0W
∗
− +

∑

ε∈specpp(h)

1ε(h)̺01ε(h). (30)

Proof Using (29), we write the matrix elements in
ω0 ◦ τ

t(a∗(gn)...a∗(g1)a(f1)...a(fn)) as

(eith[1ac(h)+1pp(h)]fi, ̺0e
ith[1ac(h)+1pp(h)]gj).

Whereas the ac-ac term yields the wave operatorW ∗
−,

the two ac-pp terms do not contribute in the large time
limit due to the Riemann-Lebesgue lemma. Specializ-
ing to c = f(g, ·) ∈ L0(h), averaging over the quasi-
periodic pp-pp term (and a density argument) leads to
(30). 2

77j induces a Bogoliubov∗-automorphism onA(h) with the
help of which one defines a state to be time reversal invariant(cf.
footnote 38).

78A stateω ∈ E(A(h)) is gauge invariantiff ω ◦ϑs = ω where
ϑs ∈ Aut(A(h)) is generated bydΓ(1).

79Identifying B(F ) andB(JF ) with creation and annihila-
tion operators on a CAR algebraA(PH) for a projectionP
with JPJ + P = 1, the C∗-algebrasA(H, J) and A(PH)
are ∗-isomorphic. For a quasi-free state onA(h), we have
ω(a∗(g)a(f)) = (f, ̺g) for some0 ≤ ̺ ≤ 1, and (cf. (20))

ω(a∗(gn)...a∗(g1)a(f1)...a(fm)) = δnm det{(fi, ̺gj)}. (29)

801ε(h) denotes the spectral projection corresponding toε ∈
specpp(h).
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Remark 24Compared to (25) and (26) for the XY
chain, there is a second term on the right hand of (30)
sincespecpp(h) is not assumed to be empty in general.

5 Entropy production rate

In this section, we determine the mean EPR in the XY
chain by direct computation, and in the EBB model
using the Landauer-Büttiker theory.

XY model

Since, in (28), we are given the explicit form of the
density of the NESSω+ in the XY chain, the evalua-
tion of the mean EPR proceeds by direct computation.

Theorem 25 (cf. [4]) The mean EPR in the NESSω+

of the XY chain from Theorem 14 is given by

Ep(ω+) =
δ

4

∫ 2π

0

dξ

2π
|κ|

sh(δµ)

ch2(βµ/2) + sh2(βµ/2)
.

Therefore,

Ep(ω+) > 0 iff βL 6= βR.

Remark 26Due to(5) in Theorem 18,ω+ is a factor
state. Hence,ω+ is ω0-singular81 iff βL 6= βR (cf.
[7]).

EBB model

The Landauer-Büttiker theory of electronic transport
describes the steady currents across the sample with
the help of scattering data82 which involves the spe-
cific structure of the sample on its one-electron level
only (cf. [31, 19, 23]). In this subsection, using the

81Let ω ∈ E(O). A linear functionalη ∈ O∗ is calledω-
singular iff η ≥ ω′ ≥ 0 for someω′ ∈ Nω impliesω′ = 0.

82The transmission probabilities.

Landauer-Büttiker theory, we want to derive an ex-
pression for the mean EPR making use of stationary83

scattering theory for perturbations of trace class type.
Motivated by (4) which relates the mean EPR to the
mean heat fluxes across the sample, we study the rate
of change of extensive thermodynamic quantitiesΦq

generated bychargesq, i.e. by self-adjoint operators
onh which commute with the uncoupled Hamiltonian
h0,84

Φq = dΓ(ϕq), (31)

where, formally,

ϕq = −
d

dt
eithqe−ith

∣

∣

t=0
= −i[h, q]. (32)

Since, in general, the observableΦq describing the flux
across the sample generated by the chargeq is not an
element ofA(h) 85, we introduce a regularization in
(32) both for the Hamiltonianh and the chargeq. For
so-calledtempered chargesq, i.e. charges for which
q(Λ) = q1(−∞,Λ](h0) ∈ L(h) for all Λ ∈ R, we define
the mean flux in the stateω ∈ E(A(h)) with density
̺ ∈ L(h) by86

ω(Φq) = lim
Λ→∞

lim
η→0

ω(Φη

q(Λ))

= lim
Λ→∞

lim
η→0

tr(̺ϕη

q(Λ)),

whereΦη

q(Λ) = dΓ(ϕη

q(Λ)), and

ϕη

q(Λ) = −i[fη(h) − fη(h0), q
(Λ)] (33)

83Stationaryscattering theory expresses the unitary evolution
groups in (24) in terms of the corresponding resolvents, andthe
study of the large time limit is replaced by the study of the bound-
ary values of these resolvents, the so-calledlimiting absorption
principle (cf. [43, 153]).

84E.g.q = hj for heat fluxes orq = 1j for matter fluxes coming
from reservoirRj (1j denotes the projection ofh ontohj).

85Recall that the second quantizationdΓ(c) is a bounded oper-
ator on the fermionic Fock space overh iff c ∈ L1(h).

86If ω̺ ∈ E(A(h)) is quasi-free with density̺, we have

ω̺(dΓ(c)) = tr(̺c), c ∈ L1(h).
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for fη(ε) = ε(1 + ηε)−(p+1) with η > 0.87

Remark 27Sinceϕη

q(Λ) has the structure of a com-

mutator, the mean fluxω+(Φq) in the NESSω+ ∈
Σ+(ω0, τ) is independent of the point spectrum con-
tribution in (30),

ω+(Φη

q(Λ)) = tr(W−̺0W
∗
−ϕ

η

q(Λ)). (34)

The next theorem contains the main assertion about the
relation of the mean flux in the NESSω+ and the un-
derlying scattering theory (theLandauer-Büttiker the-
ory) expressed by the unitaryscattering operator

S = W ∗
+W−.

Theorem 28 (cf. [9]) Assume(H1)-(H3). Let ω+ be
the NESS in the EBB model from Theorem 23, and
let q be a tempered charge. Ifess supε∈specac(h0)(1 +

ε)p+1‖̺0(ε)‖ ‖q(ε)‖ <∞, then88

ω+(Φq) =

∫

specac(h0)

dε

2π
tr(̺0[q−S

∗qS]). (35)

Proof Let p = −1.89 Since, by assumption (H2),
v = h− h0 ∈ L1(h), we can write90

v = x∗y, x, y ∈ L2(h). (36)

Plugging (36) into the commutator (33) of (34) and
passing into the spectral integral representation ofh0

87Using (H1) and (H2) in Assumption 21 and Lemma 3.1 in [9],
we havefη(h)−fη(h0) ∈ L1(h). Moreover, ifq ∈ L(h), we can
drop theΛ-regularization.

88̺0, q, andS commute withh0. Hence, in the direct integral
representation ofh0 on hac(h0), they are given by some̺0(ε),
q(ε), andS(ε), respectively (cf. [9]).

89Using Birman’sinvariance principle, the overall strategy of
the proof forp ∈ N remains unchanged. The invariance principle
addresses the question about the invariance of the wave operators
W± under the transformation ofh0 andh intoϕ(h0) andϕ(h) for
so-calledadmissiblefunctionsϕ (cf. [43, p.86]).

90E.g. using the polar decomposition ofv. L2(H) denotes the
Hilbert-Schmidt operators onH.

on hac(h0), we get the form (35) where the square
bracket is written as a difference of products of
the representationZ(aW−, ε) of aW− on theε-fiber
of hac(h0) for a = x, y, xq(Λ), yq(Λ). Now, due
to (36), Z(aW−, ε) can be expressed by means of
boundary values of bordered resolventsar0(z)b for
a, b ∈ L2(h).91 Using the stationary representation
of the scattering matrixS(ε) (cf. [43, p.182]), we
get (35), where, in the square bracket, we still have
q(Λ) instead ofq. With the help of the assumption
ess supε∈specac(h0)‖̺0(ε)‖ ‖q(ε)‖ < ∞ and the esti-
mate92

∫

specac(h0)

dε

2π
‖S(ε) − 1‖1 ≤ ‖v‖1, (37)

we can take the limitΛ → ∞ which yields the asser-
tion. 2

Landauer-Büttiker formula
In order to make contact with the usual form of the
Landauer-Büttiker formula, we require the sample to
be confined. Using the unitarity of the scattering op-
erator, we get the following corollary from Theorem
28.

Theorem 29 (cf. [9]) Assume in addition(H4), and
let the reservoir density of the reference state be of the
form⊕jfj(hj).93 If q = ⊕jgj(hj), then94

ω+(Φq) =
∑

j,k

∫

dε

2π
Tjk fk (gk − gj). (38)

91Fora, b ∈ L2(H), the operator-valued function

ar(ε± iδ)b

has a limit inL2(H) for δ → 0 for a.e.ε ∈ R (cf. [43, p.192]).
92Cf. [43, p.249]. The trace norm on the left hand side is taken

over the fiber Hilbert space.
93Under (H4), expectations of flux observables in the NESSω+

are independent of the reference state of the sample, cf. [9].
94The total transmission probabilityis given by

Tjk(ε) = tr(tjk(ε)t∗jk(ε)), Sjk(ε) = δjk + tjk(ε).

The integration is carried out overspecac(hj) ∩ specac(hk).
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Remark 30The mean flux in (38) can also be writ-
ten in the formω+(Φq) =

∑

j,k

∫

dε
2π Tjk (fj − fk) gj .

Hence, it vanishes if all reservoirs have the same den-
sity or, from (38), ifΦq is the totalg(h0)-flux entering
the sample.

Let us now focus on the physically interesting NESS
ω+ in which the reservoirs are in thermal equilibrium
at inverse temperaturesβj with chemical potentialsµj.
Hence, the mean EPR looks like

Ep(ω+) = −
∑

j

βj{ω+(Φh
j ) − µj ω+(Φc

j)},

whereΦh
j = Φhj

andΦc
j = Φ1j

(cf. (4)). Letξj(ε) =

βj(ε − µj) andF (x) = (1 + ex)−1. Then, the mean
EPR has the following properties.

Theorem 31 (cf. [9]) Assume(H1)-(H4). If fj(ε) =
(1 + eβj(ε−µj))−1, then95

Ep(ω+) =
∑

j,k

∫

dε

2π
ξj Tjk (F (ξj)−F (ξk)).

Moreover,Ep(ω+) ≥ 0, and Ep(ω+) > 0 if some
βj 6= βk or µj 6= µk.96

Proof The form of the mean EPR directly follows
from (38). Moreover, the unitarity of the scattering op-
eratorS allows to establish a lower bound onEp(ω+)
whose explicit structure leads to the last two assertions
(cf. [9]). 2

Remark 32The Landauer-Büttiker theory has already
been applied to the SEBB model in [24].

95The integration domain isspecac(hj) ∩ specac(hk).
96More precisely,Ep(ω+) > 0 if channelj → k is open, i.e. if

L({ε ∈ specac(hj) ∩ specac(hk) : Tjk(ε) 6= 0}) > 0

for the pairj, k (andL(·) is the Lebesgue measure; cf. [9]).

6 Linear response theory

EBB model

Analogously to Section 3, we denote byx =
(xh

1 , ..., x
h
n, x

c
1, ..., x

c
n) the thermodynamic forces

xh
j = βeq − βj , xc

j = βjµj − βeqµeq

for some reference temperatureβeq and some refer-
ence chemical potentialµeq. Moreover, letfeq(ε) =
(1 + eβeq(ε−µeq))−1 be the density of the gauge-
invariant quasi-free equilibrium stateωeq ∈ E(A(h))
at inverse temperatureβeq with chemical potentialµeq.
In the present context, the kinetic coefficients from
Section 3 have the form

Luv
ij =

∂

∂xv
j

ω+(Φu
i )
∣

∣

∣

x=0
,

whereu, v ∈ {c,h}. In the following theorem, the first
two assertions follow from Theorem 31 and (a gener-
alization of) (37). For a proof of the GKF, cf. [9].

Theorem 33 (cf. [9]) Assume(H1)-(H4). Then, the
kinetic coefficients in the NESSω+ of the EBB model
look like97

Luv
ij = −

∫

dε

2π
εnu+nvfeq(1−feq)(Tij−δij

∑

k

Tik).

If (H1)-(H4) and(TRI) holds, then we have the ORR,

Lhc
ij = Lch

ji .

Finally, if (H1)-(H5) with p = −1 and (TRI) holds,
then we have the GKF,

Luv
ij = lim

T→∞

1

2

∫ T

−T
dt ωeq(τ

t(Φu
i )Φv

j ).

Remark 34In the SEBB model, the relevant actions
of the wave operator can be explicitly evaluated. This,
in turn, leads to explicit expressions for the kinetic co-
efficients, and, hence, the ORR and the GKF can be
verified by direct computation (cf. [7]).

97With nh = 1, nc = 0. The integration domain isspecac(h0).
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Remark 35The ORR and the GKF have been derived
axiomatically for more general classes of open sys-
tems in [29].

7 Weak coupling theory

As discussed in Section 3, we want to establish a crite-
rion which guarantees the strict positivity of the mean
FGR EPR. To this end, let us consider an open sys-
tem consisting of a finite dimensional sampleS with
HamiltonianHS ∈ OS which is coupled to reservoirs
in (τRj

, βj)-KMS statesωRj
by the the local pertur-

bationλV with real coupling parameterλ, and letV
be of the formV =

∑

j Vj with

Vj =
∑

α

Qα
j ⊗ vα

j ,

whereQα
j ∈ OS andvα

j ∈ ORj
are self-adjoint. As

discussed in Section 3, in order to establish such a cri-
terion, we make a first assumption on the effective cou-
pling of the sample to the reservoirs and a second one
being a non-degeneracy condition for the Davies gen-
erator. The first assumption is formulated with the help
of the Fourier transform of the time correlation func-
tions of the reservoir partvα

j of the coupling,

hαβ
j (ε) =

∫ ∞

−∞
dt ωRj

(τ t
Rj

(vα
j ) vβ

j ) e−iεt,

whereas the second assumption involves the commu-
tant (cf. footnote 16),

Cj = {HS , Q
α
j all α}′.

Assumption 36 (cf. [5])
(Ej) hj(ε) > 0 for all ε ∈ spec(−iδS)98

(Cj) Cj = C 1

We can now formulate our criterion for the strict posi-
tivity of the FGR EPR. The FGR NESSωS+ is given
in (5).

98We denote byhj(ε) the matrix with entrieshαβ
j (ε). More-

over, recall thatδS = i[HS , ·] denotes the generator ofτ t
S ∈

Aut(OS).

Theorem 37 (cf. [5]) Assume(Ej) and (Cj) for all
j = 1, ...,M . Then, for sufficiently smallλ, if there
are someβi 6= βj , the mean FGR EPR is strictly posi-
tive,

Epfgr(ωS+) > 0.

Proof Let us denote byKS the adjoint ofKH w.r.t.
the scalar product(X,Y ) = tr(X∗Y ) (cf. Section 3).
Since

Epfgr(ω) =
∑

j

Epfgr,j(ω)

for any ω ∈ E(OS), the total mean FGR EPR van-
ishes iff each nonnegativeEpfgr,j(ω) vanishes. Under
the assumption (Ej) and (Cj), the only state in the ker-
nel ofKS,j is the unique(τS , βj)-KMS stateωβj

(cf.
[32]). Moreover, it is the only state with vanishing
mean FGR EPR (cf. [32]),

Epfgr,j(ωβj
) = 0.

Since the assumption (Ej) and (Cj) also imply that the
kernel of the totalKS is nondegenerate (cf. [32]), the
assertion follows if there are someβi 6= βj . 2

Remark 38One easily constructs examples which il-
lustrate that the conditions of Theorem 37 are suffi-
cient but not necessary (cf. [5]).

Remark 39As discussed at the end of Section 3, the
goal is to use this algebraic criterion to prove strict
positivity of the entropy productionEp(ω+) of the full
microscopic model. This is achieved as soon as, for
sufficiently smallλ, the relation

Ep(ω+) = λ2 Epfgr(ωS+) + O(λ3) (39)

is established. This has been done for a finite dimen-
sional sample coupled to two fermionic reservoirs (cf.
[28]) and for the SEBB model (cf. [7]).

Theorem 40 (cf. [5]) If the assumptions of Theorem
37 and(39) hold, then, for sufficiently smallλ,

Ep(ω+) > 0.
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8 Correlations

In this last section, we will study some more correla-
tion functions in space and time of certain types of ob-
servables in the foregoing NESS of the XY chain and
in more general quasi-free states. As spatial correla-
tions, we treat the spin-spin coupling and the empti-
ness formation probability, and as a correlation in
time, we study the moment generating function of the
Gallavotti-Cohen symmetry.

XY model

We start off with the truncated two-point function of
the longitudinal99 spin-spin correlation,

CT
3 (n) = ω+(σ

(0)
3 σ

(n)
3 ) − ω+(σ

(0)
3 )2,

whereω+ is the unique NESS of Theorem 16 with
density (27).

In contrast to the situation in thermal equilibrium, i.e.
for βL = βR, where the decay is exponential (cf.
[33, 35, 14]), the out of equilibrium decay in the lon-
gitudinal direction is polynomial only.

Theorem 41 (cf. [4]) The decay of the longitudinal
truncated two-point functionCT

3 (n) in the NESSω+

of the XY chain behaves like

0 < lim sup
n→∞

|n2CT
3 (n)| <∞.

Proof With the help of the Jordan-Wigner transforma-
tion (9), the longitudinal correlation functionCT

3 (n)
becomes a four-point function in the Jordan-Wigner
fermions, and so for alln independently of their dis-
tance from the origin.100 Hence, using the fact thatω+

is quasi-free, the evaluation ofCT
3 (n) boils down to

study the determinant of the inverse Fourier transform

99I.e. in the 3-direction. The 1,2-directions aretransversal.
100The relation (9) is local in the 3-direction , i.e.

σ
(n)
3 = 2a∗nan − 1.

of ˆ̺+(eiξ) from (28) which, after an explicit computa-
tion, takes the form

CT
3 (n) = −

(
∫ 2π

0

dξ

2π

sign(κ) sh(δµ)

ch(βµ) + ch(δµ)
sin(nξ)

)2

+R(n),

where the remainderR(n) is exponentially decaying
for largen. Due to the discontinuity in the integrand,
the claim follows by partial integration. 2

Naturally, we are also interested in the spin-spin cor-
relation in the transversal directions. Unlike in the
longitudinal correlation functionCT

3 (n), the number
of fermionic events involved after the Jordan-Wigner
transformation increases linearly inn in the transver-
sal correlation function101

C(n) = ω+(σ
(0)
1 σ

(n)
1 ).

This is due to the non-local nature of the Jordan-
Wigner transformation (9) in the transversal direction,

σ
(n)
1 = T

(

n−1
∏

k=1

(2a∗kak − 1)

)

(an + a∗n)

if n ≥ 2 (cf. after (9)).102 With the help of the Bogoli-
ubov∗-automorphismτx ∈ Aut(A(h⊕2, J)) of trans-
lations (cf. footnote 66),

τx(B(f)) = B(Uxf),

whereUx = ux ⊕ ux and(uxϕ)(y) = ϕ(y − x) for
ϕ ∈ h, we define the form factors by

f2j−1 = Ujg0, f2j = Ujg1, (40)

whereg0 = [−δ−1, δ−1] andg1 = [δ0, δ0]. Hence, we
can express the correlation function as103

C(n) = pf Ω(n). (41)

101We studyσ(0)
1 σ

(n)
1 , the 2-direction being analogous.

102Similarly,σ(n)
2 = iTS(n)(an − a∗n).

103Recall thatΩ(n) is the correlation matrix from (21) andpf is
the Pfaffian from (19).
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Since, by definition,Ω(n) is skew-symmetric, the
square of the correlation becomes a determinant.
Moreover, using the definitions

ϕα,α′(eiξ) =
sh(αµ(eiξ))

ch(αµ(eiξ)) + ch(α′µ(eiξ))
,

q(eiξ) =
cos ξ − λ+ iγ sin ξ

µ(eiξ)
e−iξ,

for α,α′ ∈ R, we have the following fundamental ob-
servation.

Theorem 42 (cf. [6]) The transversal spin-spin cor-
relation functionC(n)2 in the NESSω+ of the XY
chain is the determinant of the finite section of a
Toeplitz operatorT [a] ∈ L(ℓ22(N)),104

C(n)2 = detTn[a],

where the2×2-block symbol has the form105

a =

[

−ϕδ,β signκ −ϕβ,δ q
ϕβ,δ q̄ ϕδ,β signκ

]

∈ L∞
2×2(T).

104An N×N -block Toeplitz matrixA ∈ C
Nn×Nn is a matrix

whose block elementsaij ∈ C
N×N depend oni− j only, i.e.

A =

2

6

6

6

4

a0 a−1 . . . a−(n−1)

a1 a0 . . . a−(n−2)

...
...

. . .
...

an−1 an−2 . . . a0

3

7

7

7

5

.

An infinite N×N -block Toeplitz operator is defined as follows.
Let f ∈ ℓ2N(N) be a C

N -valued sequence which is square-
integrable w.r.t. the Euclidean norm onCN , and letax be a se-
quence of complexN×N -matrices. The action of a Toeplitz op-
erator is defined byf 7→ {

P∞

j=1 ai−jfj}
∞
i=1. Due toToeplitz’

theorem(cf. [15]), such an operator is inL(ℓ2N (N)) iff

ax =

Z 2π

0

dξ

2π
a(eiξ) e−ixξ

for some a ∈ L∞
N×N (T), where L∞

N×N (T) denotes the
C

N×N -valued functions onT whose components are all in
L∞(T). Using the projectionPn({x1, ..., xn, xn+1, ...}) =
{x1, ..., xn, 0, 0, ...}, we define thefinite sectionof T [a] by
Tn[a] = PnT [a]Pn on the range ofPn.

105A Toeplitz operator and its symbol are calledscalariff N = 1
andblockotherwise.

Proof We know from assertion(3) of Theorem 18 that
ω+ is translation invariant, i.e.

ω+ ◦ τx = ω+.

Hence, due to the structure of the form factorsFj

in (40), the correlation matrixΩ(n) is a 2×2-block
Toeplitz matrix. Moreover, since the densityˆ̺+ from
(28) is inL∞

2×2(T), we get the assertion by invoking
Toeplitz’ theorem of footnote 104. 2

Therefore, in order to estimate the decay rate ofC(n),
we have to study the asymptotics of the determinant of
a non-scalar Toeplitz operator. Due to the general lack
of control of the spectrum of a non-regular non-scalar
Toeplitz operator in the vicinity of the origin106, we
focus on an upper bound on the decay rate. The proof
of the next assertion is given after Theorem 47 in the
setting of more general quasi-free states.

Theorem 43 (cf. [6]) The decay rate of the transver-
sal correlation function in the NESSω+ of the XY
chain has the strictly negative upper bound of the form

lim sup
n→∞

log |C(n)|

n
≤

1

2

∑

j=L,R

∫ 2π

0

dξ

2π
log th(βjµ/2).

In order to learn more about the correlations out of
equilibrium, we study two other types of spatial cor-
relations in the NESSω+ of the XY chain, namely at
thevon Neumann entropy densityand at theemptiness
formation probabilityboth of whose asymptotics can
eventually be treated by means of Toeplitz theory. The
von Neumann entropy is defined by

Ent(n) = −tr(ω
(n)
+ log ω

(n)
+ ),

whereω(n)
+ denotes the restriction of the NESSω+ to

the subblock ofn neighboring spins on the chain. Let
us denote byη(x) = −x log x − (1 − x) log(1 − x)
the so-calledShannon entropy. Then, we have the fol-
lowing theorem about the asymptotics of the von Neu-
mann entropy density.

106This is due to the fact thatCoburn’s Lemmahas no analog in
the block case (cf. [15, 186]).
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Theorem 44 (cf. [8]) The asymptotic von Neumann
entropy density in the NESSω+ of the XY chain is
strictly positive,

lim
n→∞

Ent(n)

n
=

1

2

∑

j=L,R

∫ 2π

0

dξ

2π
s(th(βjµ/2)),

wheres(x) = η((1 + x)/2).

Proof We start off by constructing the Majorana107

correlation matrixΩ(n)ij = ω+(didj) whose imag-
inary part turns out to be the finite section of a
2×2-block Toeplitz operator with some symbola ∈
L∞

2×2(T). Moreover, there exists a set of fermionsci
in the CAR algebraA(hn) over hn = C

n s.t. the re-

duced density matrixω(n)
+ has the form

ω
(n)
+ =

n
∏

i=1

(

1 + λ
(n)
i

2
c∗i ci +

1 − λ
(n)
i

2
cic

∗
i

)

,

where±iλ
(n)
i ∈ spec(Tn[a]). Hence, from the spec-

tral representation ofω(n)
+ , we have

Ent(n) =
n
∑

i=1

s(λ
(n)
i ).

Since‖Tn[a]‖ ≤ ̺ < 1 uniformly in n, Szeg̋o’s first
limit theorem in the block case (cf. [15, p.202]) im-
plies the assertion. 2

At the end of this subsection, we discuss the correla-
tion function mentioned above in which the effect of
the singularity of the symbol̺̂+ in (28) becomes vis-
ible (at least in the isotropic caseγ = 0). This is the
case for the so-calledemptiness formation probability,

P (n) = ω+(Π(1)Π(2). . .Π(n)),

whereΠ(j) = (1−σ
(j)
3 )/2 is the orthogonal projection

onto the spin down direction. In this correlation, after

1072n self-adjoint operatorsdj on C
2n

satisfying{di, dj} =
2δij are calledMajorana operators.

casting it again into the form of a block Toeplitz deter-
minantdetTn[a], we can extract the subleading order
q in the largen asymptotics from Fisher-Hartwig the-
ory (cf. [16, p.582]),108

detTn[a] ∼ G[b]n+1nqF [b, tj , αj , δj ].

Here, the Fisher-Hartwig symbola has the form

a(t) = b(t)
∏

k

|t− tk|
2αkϕδk ,tk(t), t ∈ T,

wheretk describes the location of singularities,b(t)
is sufficiently regular, andϕδi,ti(t) is thepure Fisher-
Hartwig jumpwith jump phase2πδk. Moreover, the
function F is independent ofn. 109 The following
effect of the true non-equilibrium on the asymptotics
of the emptiness formation probabilityP (n) is studied
in [12].

Theorem 45 (cf. [12]) The subleading orderq of the
emptiness formation probabilityP (n) in the NESSω+

of the isotropic XY chain is strictly positive iffβL 6=
βR.

EBB model

In this final subsection, we derive a condition on the
symbol which implies exponential decay in more gen-
eral quasi-free models.110 For this purpose, we start
directly in the (self-dual) quasi-free setting on the dis-
crete line, i.e. we pick any quasi-free stateω ∈
E(A(h⊕2, J)) with density̺ ∈ L(h⊕2) satisfying the
conditions (23), and study the correlationC(n) given
by (41) under the following assumptions.

Assumption 46 (cf. [10])
(A1) The quasi-free stateω is translation invariant.
(A2) f2j−1 = Ujg0 andf2j = Ujg1
(A3) g0 = [−δ−1, δ−1] andg1 = [δ0, δ0]

108TheFisher-Hartwig theorydescribes the asymptotic behavior
of Toeplitz determinants for a class of symbols whose singularity
do not allow for an analysis by Szegő’s theory.

109For the precise formulation of the conditions in theFisher-
Hartwig theorem, cf. [16, p.582].

110Cf. Remark 50 for the correlation in time mentioned above.
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Due to (A1), the density̺ is, in the Fourier picture,
an operator̺̂ ∈ L(ĥ⊕2) which acts by multiplication
with the functionˆ̺(eiξ) ∈ L∞

2×2(T). With the help of
the spectral set

T = {ξ ∈ [0, 2π) | 1/2 6∈ specˆ̺(eiξ) 6⊆ {0, 1}},

we derive the following upper bound on the decay rate
lim sup log(|C(n)|)/n.

Theorem 47 (cf. [10]) Let ω ∈ E(A(h⊕2, J)) be a
quasi-free state with density̺ ∈ L(h⊕2). Assume
(A1)-(A3), and letL(T) > 0. Then, the decay rate
of the correlation functionC(n) has a strictly nega-
tive upper bound of the form

lim sup
n→∞

log |C(n)|

n
≤

1

2

∫

T

dξ

2π
log |det(2ˆ̺(eiξ)−1)|.

Proof Due (A1)–(A3), the correlationC(n) can be
written as the determinant of the finite section of a2×2-
block ToeplitzT [a] with some symbola ∈ L∞

2×2(T).
Introducing a strictly positive and uniform gap at the
origin on the set of singular values ofTn[a], the
Avram-Partner theorem111 implies that the decay rate
is bounded from above by

∫ 2π

0

dξ

2π
tr log′(a∗(eiξ)a(eiξ)),

where log′(x) denotes the logarithm regularized
w.r.t. the gap. Using the fact thatdet a(eiξ) =
− det[2ˆ̺(eiξ)− 1] and some basics from Toeplitz the-
ory, we get the assertion. 2

111TheAvram-Parter theoremin the block case states that for a
block Toeplitz operator with symbola ∈ L∞

N×N (T) and singular

valuest(n)
j , one has

lim
n→∞

1

Nn

Nn
X

j=1

g((t
(n)
j )2) =

1

N

Z 2π

0

dξ

2π
tr(g(a∗a))

whereg ∈ C0(R) (the functions of compact support; cf. [15,
p.186]).

Remark 48In the example of the XY chain out of
equilibrium, Theorem 47 yields the expression already
found in Theorem 43. In the case of thermal equilib-
rium, βL = βR, the spectral condition is still satisfied
and our bound is exact. At zero temperature, the spec-
tral condition is not fulfilled anymore. Indeed, there
exists long-range order or quasi-long-range order de-
pending on the anisotropyγ and the magnetic fieldλ
(cf. [10]).

Remark 49With an analogous argument, we can give
a sufficient condition on the spectrum of the density̺
which guarantees the exponential decay for the empti-
ness formation probability correlation from the previ-
ous subsection (cf. [12]).

Remark 50Finally, we are interested in the
Gallavotti-Cohen(GC) symmetry

e(1 − λ) = e(λ)

for the limit of the moment generating function

e(λ) = lim
t→∞

1

t
log ω+(e−λ

R t
0 ds τs(Φ)),

whereΦ is of the form (31) and (32). Using the asymp-
totic theory of block Wiener-Hopf determinants,e(λ)
can be expressed by the scattering operator as in Sec-
tion 5. Numerical evidence is given in [13] for invalid-
ity of the GC symmetry, a point which remains to be
studied in more detail.
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