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Organization of the thesis

The present habilitation thesis deals with the rigorouslalgic approach to non-equilibrium quantum statistical
mechanics I've been involved in recently. The main body ef tiilesis consists of original research articles
(Chapters 2 to 9) to which | prepend an overview (Chapter 19s&lgoal is twofold. It is supposed to serve,
first, as a general introduction to non-equilibrium quanttatistical mechanics and, second, as a condensed
presentation of our work on the specific models of Chapters 2 within the framework of the foregoing
general theory.

More precisely, in Section 2 of Chapter 1, | explain thigalgebraic approach to non-equilibrium quantum
statistical mechanics. In Section 3, the general framewb&ection 2 is specialized to the important case of
open systems, a setting which serves as paradigm for thg sfisystems out of equilibrium. In Sections 4 to
8, these general concepts are applied to the class of qeasivfodels (besides Section 7 which is of greater
generality). In order to keep the overview sufficiently share omit most of the details in the main text. If,
however, it is felt that more details have to be given, they fauit into footnotes. Moreover, the proofs, if
displayed at all, are sketched only. Detailed proofs carobad in the Chapters 2 to 9.
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Chapter 1

Overview Ru

1 Introduction

Since a few years, there is a renewed interest in the
field of rigorous non-equilibrium quantum statistical
mechanics (cf. [7, 27] for example for a brief introduc-__ _
tion). At the heart of this activity is the construction” '9ure 1: The samplé coupled o) reservoirsR ;.
of the so-callechon-equilibrium steady stattNESS)

and the corresponding meamtropy production rate

(EPR). Although a time independent approach to tBger which the observable algebra is built. For our
construction of NESS has become available recenglyoice of couplings between the sample and the reser-
(cf. [27, 28]), most of the work described in thigoirs®, we are left with a problem from time dependent

overview uses the more traditional approach makiggattering theory for perturbations of trace class type.
use of time dependent scattering theory on the algebra _ _ _
of observables (cf. [38, 39}).Furthermore, the mod- 1 €N, having a (unique) NESS at our disposal, we can

els we consider are so-callepen systemsAn open study the thermodynamics of an open system. First
system configuration consists osamplesystem be- and foremost, we are interested in the existence of
ing frequently finite dimensional or at least confineon-vanishing steady héafluxes across the sample.

and an extendedeservoir (also calledenvironmenjt ThiS iS equivalent to show that the mean EPR in this
which, in turn, may consist of several subreservoirdESS 1S strictly positive. Whereas, in certain cases, it
cf. Figure 1. is possible to do that in the full microscopic model (cf.

[28, 4, 7]), we rely, in other cases, on theak cou-
For the sake of concreteness, we start off, whereb%g (or van Hové description which allows to ex-

possible, with the discussion of a particular open s\g;t the leading order contribution to the mean EPR
tem, the so-calleXY chain(cf. [3, 4]) which is a ¢4 5ficiently small couplings (cf. [5, 7]). Of course,
special instance of the class of Heisenberg spin meg 1his purpose, we have to make sure that the weak
els in one dimension (cf. [33]). In due course, W&, yjing regime can indeed be rigorously related to the
will extend the exposition to the more genesdéc- microscopic description (cf. [28, 7]).

tronic black box(EBB) model which is a quasi-freeyoreqver, we will see that the scattering approach nat-
fermionic system whose dynamics act by so-caBeel 5y jeads to the so-calledandauer-Biittiker theory
goliubov evolutions (cf. [7, 9]} As a consequence,pich expresses such fluxes (and, hence, the mean
the problem of constructing a NESS boils down toE’bR) by means of the scattering operator of the un-
scattering problem in the one-particle Hilbert Spa?ferlying scattering process. Using this theory, we de-
The algebraic framework allows for a “coordinate free” ddive the Onsager reciprocity relation$ORR) and the
scription of the thermodynamic limit of a local system.

2Occasionally, we will report on results in a particular EBB  *Symbolized by the shaded tube in Figure 1.
model, the so-calledimpleEBB (SEBB) model treated in [7]. “4or matter or charge etc.




Green-Kubo fluctuation-dissipation formul@&KF) of continuous group of x-automorphisnfsof ©.” We
linear response theory (cf. [9]). Linear response th@enote the group of-automorphism o® by Aut(O).

ory provides an approximation of the physical situ&uch ar! is called aC*dynamicsand the paifO, 7)
tion where the non-equilibrium configuration is not toa C*dynamical syster(cf. [17, p.136]).

far from equilibrium.

Finally, we studycorrelation functionsvhich describe Remark 1Note that it is not possible to assume the
the spatial interdependence of typical observablesdynamics to be strongly continuous for all quantum
systems out of equilibrium (and in more general quasirechanical systems, e.g. for free bosons, the dynam-
free systems) using Toeplitz theory. Whereas, fims iso-weakly continuous only (cf. [18, p.57f)But,
some type of correlations (spin-spin, emptiness form&nce we are treating free fermionic systems in the fol-
tion), we establish spectral criteria on the density lmfwing whose dynamics are strongly continuous, we
the quasi-free (non-equilibrium) state which guararestrict our discussion t6*dynamical systems.

tee exponential decay in the limit of large space sepa-

ration (cf. [6, 10, 11, 12]), we directly determine th@ statew is a normalize® positive!® linear functional
exact asymptotic behavior for others (von Neumagm 0. We denote by () the set of all states of?.1
entropy, cf. [8]). Moreover, we recently started the ineor most computational purposes, we have to choose
vestigation of a specific temporal correlation functiofpme Hilbert space “coordinatization”, i.e. we have
in quasi-free systems, namely the generating functigfeave the representation independent formulation in
of the Gallavotti-Cohen symmetry (cf. [13]). terms of C*algebras. A useful coordinatization is es-
tablished with the help of the so-call&NS theorer?
which, for any statev € £(0), asserts the existence
2 General framework (and uniquenesd) of a representatiom,, of the C*
algebra® on some Hilbert spack,, s.t.

In this Section, we first explain the general set-up used
in the algebraic description of a quantum mechanical
system, namely the objects representing its aIgebraLof

- 4 - _
observables, its physical states, and its dynamics. a ::otr_ne cyclié vc_ecttorglw etr?{“}' l\lN.r._t. ﬂt"s r;apre ¢
terwards, we introduce a particular state, the NE ntation, we can introduce the foflowing two types o

which has already been mentioned in the Introductio%tfates' First, for a given € £(0), a linear functional

Finally, the mean EPR in a NESS is defined as the ratesa ..automorphism ot is a bijective-morphism of® into

of change of the so-calle@lative entropy itself.
" More precisely; is a strongly continuous representation of
the additive groufR in Aut(0), i.e. 7" € Aut(O) with

Algebraic quantum statistical mechanics 0

w(A) = (R, 7 (4)S2)

The physical observables of a quantum mechaniggfl the mai 5 — 7'(A) € O'is continuous in norm.

system are elements of@-algebra® with identity?, grgii i(slt)hfn lca”ed a7"-dynamical system

whereas the time evolution is defined to be a stronglyio, w(A*A) > 0. Note thatw is continuous its is positive

(cf. [17, p.49]). Hencew € O™, whereO™ is the Banach space
dual of O.
g(0) is a convex subset ab*. Moreover, it is compact in
the weakx topology (cf. [17, p.53)).
A" A = | A% 12The Gelfand-Naimark-Segal theorem (cf. [18, p.56]).
13Up to unitary equivalence.
An identity 1 is an element 0® such thatl A = Al = A. .e. the sef{ ., (A)Q0 : A € O} is dense irL,,.

SA C*-algebra® is an algebra (ovet here) equipped with an
involution « and a submultiplicative nor - || which is complete
and has the property



W' € O*is calledw-normaliff there exists a trace clasDefinition 2 (cf. [38, 39]) Let (O,7) be a C*
operatorp’ € L}(H,)P s.t. dynamical system, and lety € £(0O) be a given
, , reference state. Then, the “NESS associated with
W'(A) = tr(p' mo(4)). and 7" are defined to be the limit points in the weak-

We denote by, the set of allo-normal states. Sec-topology of the néf
ond, a statev € £(0) is called afactor stateiff its en- .
veloping von Neumann_ algedfan,, = ww_(O)” is a i/ dt woo !, T >0. )
factorl” Moreover, again representation independent, T Jo
we define the following states used later on. (@t 1) _ _ _
be aC*-dynamical systemy € £(0), 5 € R, and The set of NIZElSS associated withand 7 is denoted
D3 = {z € C: min{0, 4} <Imz < max{0,5}}. A by 3 (wo, 7)-
statew is a(r, 3)-KMS staté?® iff, for any A, B € O,
there exists a holomorphic functidry z on 33_5 which  One may wonder to what extent the 8&t (wp, 7) de-
is bounded and continuous on the clos@g with pends on the reference statg On physical grounds,
boundary value$ one expects that it remains unchangedifs replaced

Faplt) = w(An(B)), gz;gune:cé t\g\(/ehich i_s_not too far fromvg, and if we as-

0 sufficiently regular.
Fapt+iB) = w(mn(B)A).

Finally, a statev € £(0) is calledmodulariff there Theorem 3 (cf. [7]) Let (O,7) be a C*dynamical
exists aC*dynamicsco! on O s.t. wis a(o,,—1)- System, and lety € £(O) be a factor state which
KMS state. is “weakly asymptotic abelian in mearfZ Then,

S (wh7) = S (wo, ) if wh € Ny
Non-equilibrium steady states +0,m) = B (wo, 7)1 wp 0

We now address our main question of how to set Mext, we turn our attention to the construction of
the frame for the description of systems which are aNESS. As described in the Introduction, we will make
of equilibrium. First and foremost, we have to providgse of the time dependent scattering method. The cen-
a definition of what could make up a sensible class @l object of this approach is the so-callédizller
non-equilibrium states. Following [38, 39], we definforphism the analog in the”*algebraic setting of
the class ohon-equilibrium steady statg®ESS) as the wave operator in Hilbert space scattering theory.

follows. To do so, let(O, 7y) be aC*dynamical system and
5\We denote byC(H) and £ (H) the bounded operators and’ = V* € O a so-calledocal perturbation W.r.t.
the trace class operators on the Hilbert spaceespectively. such a perturbatio’/, we define the perturbed*

A von Neumann algebran on a Hilbert space is a *-
subalgebra of. (1) (with the adjoint operation as involution) such - 20gqr the directed system withi in the index sef0, oo) (and
that9n” = M. Here, ordering “<”).

M = {A € L(H): [A, B] =0 forall B € M} 2y, (wo, 7) is a non-empty, weak-compact subset af (O)
’ whose elements areinvariant, i.e.

is called thecommutanof 91, where[A, B] = AB— BA denotes
the commutator ofA and B. Moreover, " = (90t")" is the so- woth =w.
calledbicommutant
A von Neumann algebr@t on H is a factor iff its center In general, for aC*dynamical system O, ), we denote by
3(m) = MmN M’ is trivial, i.e. if 3(M) = C1. £(0, ) ther-invariant states i€ (O).
18KMS stands for Kubo-Martin-Schwinger. 2le. limr—o f, dtwi([r'(A), B])/T = 0 for all wj €
19Cf. [18, p.81]. If 3 = 0, we set® 5 = R. Noso-



dynamicsr! € Aut(O) by Dyson’s series, Proof We note that, due to the-invariance ofv,
t — t 1 T 1 T
7 (4) 7o(4) —/ dtwOOTt:—/ dtwOO(TO_tOTt),
. T Jo T Jo

n—1 t
T2t (H /0 Aty | adaltos b8 (D) pore on the left hand side we have the definition of
a NESS from (1), and, on the right hand side, we use
where we set, = ¢t and make use of the definition  (3). O

ady (t1,t) = [rg'(V), 5(A)],

adp(tn, oo t1,t) = [ (V),adn_1(tn1, ... t1, £)]. Entropy production rate

The following theorem formulates the algebraic andhe meanentropy production rat§EPR) is defined

log of Cook’s criterionin Hilbert space scattering theWith the help of the concept of the so-callezlative
ory (cf. [43, p.84]). entropy On the analogy of the relative entropy of two

measure¥, the relative entropy of a density maffix
Theorem 4 (cf. [37, 7]) Let theC*dynamical systemp’ on a Hilbert spacé{ w.r.t. the density matrixy is
(O, 1) be “asymptotically integrable w.r.t. the localdefined as
perturbation V" generating the perturbed dynamics
7, i.e. assume that Ent(p|p) = tr(p'(log p —log p')).

/ at [|[V, 7 ()] < oo It has the two properties (cf. [18, p.268])
0

/ < / —0i I —
for all A in a dense subset @?. Then, Ent(plp) <0, Ent(plp) =01t "=
e In order to define the relative entropy for two more
v+ =s-—limrgTor () general states i€(0), one makes use of theela-
tive modular operatorfrom Tomita-Takesaki’'s mod-
exists and defines a monomorphfdrwhich is called ular theory of von Neumann algebr&s.It turns out
the “Mgller morphism” onO. that, in this generalization, the foregoing two proper-
ties still hold.

As soon as we are assured, in one way or another ﬂf following th ivation for th
the existence of the Mgller morphism (as it will be thlg € following theorem Serves as motivation for the
8bsequent definition of the mean EPR.

case in the models treated below), the following bag!
observation for ay-invariant reference statg imme-  2*For a probability measurg (on some convex compact subset

diately leads to the construction of the unique NESS the Euclidean space) which is absolutely continuous.vtiie
Lebesgue measure (or for more general Radon measures), the

Theorem 5 (cf. [7]) Let (07 7_0) be a C*dynamical relative entropy of:” w.r.t. iz is defined by (cf. [18, p.267])
systemwy € £(O, 1) a reference state, and a local Ent(y|) = — ,<10 du’)
perturbation. Then, if the Mgller morphism_ exists, o P )
there exists a unique NESS. € ¥, (wp, ) of the

form

A density matrixor statistical operatoyis anA € £L(H) s.t.

A>0, AcL'(H), trA=1.

Wy = wWo O V4.
28Cf. [18, p.276] for the case of so-called faithful normakssa

Z.e. an injective homomorphism. More precisely, is an A statew € £(0O) is calledfaithful iff w(A*A) > 0 for all non-
isometricx-endomorphism which is, in general, not surjective. zeroA € O.




Theorem 6 (cf. [26]) Let (O, 1p) be aC*dynamical Bringing such a structure into use is motivated by
system,wy € &(O,7) a modular state for a the physical situation in which a (confinesBmpleS
C*dynamicso!, with generatord,,?/, and V € is brought in contact with an (extendet§servoir®
dom (é,,,) a local perturbation generating the per-R. Both the sample and the reservoir are described

turbedC*dynamicsr. Then, for any(, € N, by C*-dynamical system&0s, 7s) and(Ox, T ), re-
L T spectively, and the>*dynamics from Section 2,
T/ dt wh(r' (60, (V) = now cglled thaincoupleddynamics, describes the time
0 evolution of the total uncoupled system,

Ent(w) o 77 |wp) — Ent(w}|wo)
N T : 6 =1L ® k.

The right hand side describes the mean rate at whiigreover, the reference statg < £(0, 1) is chosen
the entropy is pumped out of the system by the pdf-factorize accordingly,
turbation V. Taking (1) into account, we make the

following definition. wo = ws Q wr.

Definition 7 (cf. [26]) Let the setting be as in Theo_In order to be able to model the physically important

rem 6. Then, the “mean EPR in the NESS & S|tua_t|on of an environment supporting a temperature
P . gradient which, eventually, may lead to a heat flux
Y4 (w(), 7)" is defined by

across the sample, we further introduce an additional
subreservoir structure, i.e. we assuRi¢o consist of
several partfRy, ..., Ry, cf. Figure 1. Thej-th reser-
whereoy = 4, (V) is called the “EPR observable”. voir R; is described by @*-subalgebraDr, € O

with the properties that
Remark 8Due to the two properties of the relative en-

tropy mentioned above, it immediately follows that, T%(OR].) C Og;, Ogr; NOg, =C1,
fora NESSw, € ¥, (wo, 7), we have

Ep(wt) = wy(ov),

for all £ # j, and Og is assumed to be generated

Ep(wy) > 0. by Og,, ..., Or,,-2° The sampleS is coupled to the
reservoirR ; through ajunctioV; = V* € Os®@0g,
and the total coupling is

V=> V.
The termopen systerdesignates a special instance of J
the class of non-equilibrium systems described in Seczs a5 calledenvironment From a physical point of view, we
tion 2 for which theC*algebra of observablgd car- are not interested in the nature of this reservoir whose tasly is

3 Open systems

ries an additional factorization structure, to guarantee a sufficient heat (or charge or matter etc.)\supp
an optimally regular way.
O =0s®0Og. #In the sense thaDx is such that it is the smalle§t*-algebra

containing all the subreservoi@r ;. An often encountered spe-
5., is a so-calleck-derivation i.e. itis a linear operator of? ~ cial case of this set-up is the followin@®; is described by &

whose domairlom (6., ) is a*-subalgebra 0®. It has the prop- dynamical systentOr, 7% ;) with reference stater;, and the

eriesdu, (A)* = duwy(A*), duwy(AB) = 6w, (A)B + Ad,,(B) total reservoir has the structure (cf. Section 4)

(theLeibniz rulg for all A, B € dom (4., ), and

Or = ®; Ory, Th = ®j7'7t€j7 WR = ®j WR;-
t t6,
0L, =€ “0.
0 Note that here, contrary to the more general case, we have
[Or;,0%,]=0.



Fluxes and entropy production rate Remark 9Note that the first and second law of ther-
modynamics trivially hold in the foregoing set-up.

Let us assume for a moment that the sample is a fi-

nite dimensional quantum systétspecified by the Remark 10Later on, we will also consider matter and

HamiltonianHs € Os which generates the time evocharge fluxes for non-finite samples in quasi-free sys-

lution 75 € Aut(Os). Since the total heat flux outtems (cf. Section 5).

of the reservoirR into the sampleS produced by the

coupledC*dynamicsrt is given byt In Section 5, using scattering theory, we will derive
d expressions for the mean EPR in the NESS of the XY
—7r'(Hs+V) ZT (O, (V, chain and the EBB model. These NESS will be con-
dt . .
structed in Section 4.

we identify the heat flux out gk ; into S with
®; = or,; (V).

In order to define the mean EPR, we assume, in e know from phenomenological non-equilibrium

dition, that the staterr € £(Ox,Tr) is modular for thermodynamics that the entropy production can be
someC*dynamicso%, € Aut(Og) with written as a bilinear form in the thermodynamic forces
z; and their conjugate fluxes;,

Linear response theory

U%(OR]) - ORp

and thatV; € dom (9% )3 Then, ifws € £(Os, 7s) Ep = Zwm.
is the unique(ts, Bs = 0)-KMS staté?, the EPR ob- ’
servable readsy = ;& (V;). In particular, if Since each flux can depend in a complicated way on

we assumevr, € E(ORJ,TR ) to be the(r,, 3;)- the applied thermodynamic forces,

4 *
KMS staté thean is mgdular for theC*-dynamics ¢; = di(1, .0 Tar),
ok, defined byok, = 77" with generatorsfy, = o _
—3;6r.. Hence, ! ! linear response theory restricts its focus on the regime
I in which the thermodynamic forces driving the system
= B;%;, out of equilibrium are so small that the dependence of

the fluxes upon the forces may be well described in

linear approximation. In other words, linear response

theory is first order perturbation theory w.r.t. the ther-

modynamic forces. If the reservoirs of the preceding

— Zﬂj wi (Pj). (4) subsection are in thermal equilibrium at inverse tem-
j peraturess, ..., By (sufficiently close to some refer-

This equation relates the mean EPR to the mean HEAt€ leMperaturéeq, say), then, the thermodynamic
fluxes across the sampie. forces may be identified with

and, for a NESSv; € ¥, (wp, 7), we get the mean
EPR

0 6. 05 = L(Hs) anddim Hs < oo. Tj = feq — B
%1%, denotes the generator of the restrict‘vtj\r}_ =7hlog -

*25%, is the generator of the restrictiark, | = a%[oRj : generating the fluxés

3BThic i _ .
Thls is thetrace statews(-) = tr(-)/dim Hs (also called ¢; = w+(<I>j).
chaoticstate orcentral state).
#\With WR; = waoRj . %The thermodynamic forces are also calgfinities
%The mean EPR is independent of if ws is faithful (cf. %"This is due to the fact that, using energy conservation (ef. R

[27]). mark 9), we can writép(w+.) = > (Beq — B5) w4 (P;).



Now, the so-calledinetic coefficientare defined to befor A € Os and B € Ox. If the coupling strength is
the coefficients of the linearization of the fluxes, parameterized by some realthen, on the time scale
t/)2, the reduced dynamics of the sample

Lij= 2w (®
T O, 2=0 Ty(A) = Ps(ry "o T' (A ® 1r))

wherez = (z1,...,2z,) denotes the collection of allis governed by the so-calledavies generatorky in
thermodynamic forces. Linear response theory studihe Heisenberg picture (cf. [21]),
the properties of these kinetic coefficients. First, for )
time reversal invariant open systetfisthe Onsager lim Ti/ M(A) = etE1(4).
. . . . A—0
reciprocity relations(ORR) reveal their symmetry,
Using the Davies generatoKy, we describe the
Lij = Lj;. open system in second order perturbation theory.in

. What concerns thermodynamics in the weak coupling
Second, again for open TRI systems, Gireen-Kubo |im;t39, we have the following. Under some effective

by the integrated current-current correlations in equyiy, there exists a unique FGR NES§, € £(Os)

librium, which has the property that
L= % / At weg (7(3:)®;), w+(A) = lim wg(e' ™4 (A)) (5)

40 \\ji
wherewe, € E(O) denotes the(r, feg)-KMS state for anyws € £(Os). W'Tl the FGR heat flux ob-
(i.e. the NESSu, for z — 0). Finally, third, thecen- Servable®ry; = K ;(Hs)™ and the FGR EPR ob-

tral limit theoremrelates them to the statistics of th§e"Vableoim = =3 ; 0 Prg: 5, the first and second
current fluctuations in equilibrium (cf. [25]). law of FGR thermodynamics hold, i.e. energy is con-

_ ) ~ served) ws+ (Pg;) = 0, and the mean FGR EPR
In Section 6, we establish the ORR and the GFK in “ﬁ%fgr(w&r) = wg(ogy) satisfies

EBB model.
Epfgr(ws-i‘) > 0.

Weak coupling theory In those models which allow for a rigorous relation
of the microscopic to the FGR thermodynamics in the

Since, from a physical point of view, we are intereste&gnse of
in the properties of the sample only (see footnote 28), 5 3
we can make use of the so-caleéak coupling theory Ep(wy) = A" Epg (ws+) + O(X), (6)

(or van Hove theor)/which integrates out the degrec_ea,]e question about the strict positivity Bp(w ) for
of freedom of the reservoirs by means of the projec“%ﬁiciently small coupling reduces to the much sim-

Ps(A® B) = Awg(B) pler question about the strict positivity Bbg,, (ws+)-

*We call it Fermi Golden Rul¢FGR) thermodynamics in [7].
40cft. [32] for a detailed description of all of the following.
“IThe Davies generatdi can be written as

38 A bijective antilinear involutior: on O is called aime rever-
saliff t(Hs) = Hs, v(V;) = Vj, andeo 75, = 7-7;]? ot. Hence,

¢ —t ¢ —t
toTy =T, Ot, tOT =T OF. KHZE:KHj7
J

An open system with reference statds calledtime reversal in-
variant (TRI) iff there is a time reversal s.t. w(r(A)) = w(A*). whereKy ; is the Davies generator fdt coupled toR ; only.



In Section 7, we establish a simple algebraic criteridmwing interaction® “6 defined to be zero on all finite
which ensures the strict positivity &fpy,, (ws). The subsets of but on the following ones,
connection (6) for the SEBB model is established in

[7].42 V({z}) = 2x0y",
U({zz+1}) = (147)ce"
+(1—’7)O‘§x)0§x+1),

4 Non-equilibrium steady states
wherex € Z.4" The parametery € (—1,1) denotes

In this section, using the time dependéhtscattering ::?ﬁ:§$fﬁ;iggA € R stands for thenagnetic field

approach outlined in Section 2, we start off with the

construction qf the NESS in the motivational ex_amp|§emar|< 119(X) represents the interaction energy of
of the XY chain. In a second part, we extend this Cofye particles inX, and, since the particles are consid-

sideration to the more general EBB model. ered to be attached to the lattice sites, the total inter-
action energyH in A is the interaction energy of all
XY chain subsystems.

The XY chain is a special instance of the cl f - .
) chain .'S special insta ) class Bor any finiteA C Z, the so-calledocal XY Hamilto-
Heisenberg spin models on the discrete lihe Let .~ ™. .
: : . . nian is defined to be
us first very briefly explain the framework of spin
systems. Eventually, we will end up with quasi-free Hy 1 Z U(X)

fermions. In the subsequent discussion of the EBB T

XCA
model, we directly proceed from the level of a quasi- -
free system. generating théocal dynamics
The kinematic structure of the XY chain consists 7h(A) = etHr g~ itHA,

of a quasi-local uniformly hyperfinite algedfacon- . o
structed over the finite subsets®fi.e. to each point Since¥ has finite rang®, the thermodynamic limif
x € Zis associated a two-dimensional Hilbert space 7(A) = lim 74(A)

Hn*, to each finite subset C Z the Hilbert space Asoo A

Hy = @zenH{s), and theC"-algebra of local 0b- o ists in norm and yields a strongly continuous one-

ser.va.bl.es is defined to @&\ = L(Ha). Fpr a finite parameter group’ € Aut(6) (cf. [18, p.247]). The
or infinite subsetZ C Z, the C*completion of the

x-algebrad, =&, is the infinite tensor produaf™* “5An interaction¥ is a map from the finite subsel§ C Z into
algebra of observables OVEL45 the self-adjoint elements & = &7 s.t. U(X) € Gx.

: . - “"The Pauli basis of>*? is defined by, = 1, and
The dynamics of the XY chain is specified by the fol- ¢ Faulibasis 1S detined byo an

0 1 —1 1 0

“2The ORR and the GKF of linear response theory in FGRther- { 10 ] 2T { i 0 ] G { 0 -1 ] '
modynamics are shown to hold in [32].

*3Such aC*-algebra is generated by an increasing neCéf “8Since the discovery of their ideal thermal conductivity amn
subalgebras indexed by a directed set possessing an anddegaquilibrium situations as described in Section 3, suchgg)ene-
ity relation (cf. [18, 40]). In applications, the index sgpically dimensionals = 1/2 Heisenberg systems have been intensively
consists of bounded subsets of the configuration spaceeatthgr investigated experimentally and theoretically (cf. [42] d4nd [20,
inclusion. An element of the net is then interpreted as thelah 44], respectively).
of physical observables for a subsystem localized in thiasestu 499 hasfinite rangeiff there is ad > 1 s.t. ¥(X) = 0 for all

“4For spins with quantum number= 1/2. finite X with diametersup,, ¢ [z — 2'| > d.

“SFor the infinite tensor product @f*-algebras, cf. [40, p.70].  *°A — oo means that\ eventually contains any finit§ C Z.



C*dynamical systeni&, 7) describes thénfinite XY Moreover,T’ stems from th&™ crossed product exten-
chain sion by some&Z,-action (cf. footnote 53). We denote

_ 2
In order to set up a non-equilibrium configuration iHy Qr[](hzthg CA\E_ algek;r%? qverb _é {kZE))sgenerated
the sense of the paradigmatic open systems from S@é—t € Jordan-igner fermions, anda

.
tion 3, we couple a finite cutos of Z between— . ) .
P S "0 Remark 12The heuristic equivalence induced by the

andz to the two remaining infinite part, andZ Jordan-Wigner transformation is rigorous on the even
to its left and right which will act as thermal reservoirs. 9 9

Using (2), we define the uncoupleg-dynamical sys- part of the corresponding algebras. However, the

T ivalence breaks down if one tries to extend it to
tem (S , where the local perturbation is the bonof?qUIVa .
(8, 7) P the whole algebra (cf. (11) in footnote 53).

coupling
1 _ . . . _
Vo= —Z0({xg, 0 + 1)) After the Jordgn_ Wigner trgnsformatlon, the interac
4 tion is quadratic in the fermions,
1
—S({— 1), —20}). 7
3 V@) mwo) (D) v({z}) = 2\ (2aia, — 1), (12)
By construction,V decouples the XY dynamics’ in ~ Y({z,z +1}) = —2(aza,41 +az41a,)
the sense that —2y(ayay 1 + a,qa,). (13)
T =TL® T ®Th Using the CAR (10), we can recasth) into the form

; 3 ®2 7155
respects the factorization of a so-calledself-dualCAR algebra ove(h®=,.J)

52The canonical anticommutation relation§CAR) algebra
6 =6, ®6s® 6p, 2A(H) over the complex Hilbert spade is the completion in the
unigueC™*norm of the quotient of the free-algebra generated by
where&, = &z, and analogously fo§ and R. AS  the symbols:*(f) anda(f) with f € H and the identityt, by the
reference statey, € £(S) in the construction of the two-sided«-algebra generated by the relationSa.f + 8g) =
NESS, we choose aa”(f) 4+ Ba*(g), a(f)" = a*(f),{a"(f),a"(9)} = 0, and

{a(f),a(g)} =0, {a*(f),a(9)} = (9, )1, (10)

where{A, B} = AB + BA is the so-callednticommutator We
Whereng is the unique(rz, 81 )-KMS state onS, will use the same notation for the abstract CAR algebra ad it

Br Fock representation (cf. [18, p.6]).
and analogously favy,". Moreoverws stands for the * “s; The construction in [1] goes as follows. LéX be theC™*-

wo = Wit @ ws ® Wik, )

chaotic state o s (cf. footnote 33). algebra generated b$ and an element’ satisfying7 = T,
2 _ i -

For computational convenience, we will leave the forg- -~ L and<£A B 9’((;;1).T’ wheref- < A?;(G) ' ?ze)
ined by#_(0;") = —o;” if 2 < 0andf_(0;") = o;

going spin picture and enter the fermlonlc_descrlptlclJ v > 0fori = 1,2, andd_(c) = ol forall z € Z.
established by the well-known Jordan-Wigner trange cover defing c Aut(6) by 0(c®) = —o® for i = 1,2

formation (cf. [30])>* and0(c(") = o) forall z € Z. Hence,& = &, + &_,
(@) ) whereS+ = {A € 6 : 0(A) = +A}, and S, is the
ay = TS(I)(O'1 —ioy ')/2, (9) evenC*subalgebra of5. Defining§(T) = T, we can write
2A(h) = A(h)+ + A(h)—, and, hence,
where @) is defined byS®@ = o{" . o™V if

G =Ah)+, & =TAW)-. (11)
z>2 80 =1, ands@ = o . oV if 2 < 0. T

Since¥(X) € &4, G4 are invariant under{ andr’ which im-
®1Since we are given a two-sided infinite chain, we use tidieswo(G_) = 0. Hence(& 4, 7) suffices for our purposes.

Jordan-Wigner transformation (devised for the one-sididite S4For an interesting consequence of this fact, cf. [34].

case only) in its generalized form (cf. [1] and footnote 53). %5In [2], the self-dual CAR algebr&l (7, J) over the Hilbert
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by using the complex linear mappigy: h? — L£(h), with v =—(y({xo, zo+1}) + v ({—(zo+1), —20}))/4
_ generates the decoupled dynarfilcs
B(f) =a*(f1) + a(f2),

T6(B(f)) = B(e"f). 18

for f = [f1, f2] € h®2. Moreover, with the antiunitary o(B(£) (€F) (18)

involution J on h®?2 defined by Let us now turn to the reference stafgfrom (8). This
o state is an example of a so-called quasi-free state. A

Jf1, fo] = [f2, f1l, statew € £(A(H®2,.J)) is calledquasi-freeiff it van-

these B(f) satisfy the relations (14). With the°eS O the odd polynomials Bi(f),

help of the “self-dual second quantizatioB (k) = w(B(f1) ... B(fang1)) =0,

>_; B(f;)B*(g;), where f;,g; € b and k =

S filg) € L£°(1)%, the local Hamiltonian andiffitis a Pfaffiai? on the even polynomials,
can be expressed aHy, = B(hy) with hy =

S v $(X) € LO(H).5 SinceeBR) B(f)e Bk = w(B(f1)... B(fan)) = pfQ(n), (20)

B(e"f) in analogy to the usual second quantizatfon yhere()(n) € C20%2n is given by
we arrive atri (B(f)) = B(e™" f). In the thermody-

namic limit, this leads to w(B(fr)B(f1)), k<l
t ” Qn) = 0, k=1 . (21)
T(B(f)) = B(e™f), (15) —w(B(f)B(f), k>1

where the one-particle Hamiltonidnis a multiplica- Hence, a quasi-free state is completely characterized
tion operator in the Fourier pictuit® which acts on by its two-point functionw(B*(f)B(g)) which, in

H®2 by multiplication with the functioff turn, determines an operatore £(h®2) by
h(e) = (cos = X) ® o3 +ysinE @ 0. (16) w(B*(f)B(g)) = (f. 09)- (22)

Analogously, the one-particle Hamiltonian Moreover, due to (14) has the properti€3
ho=h—v="hy®hs®hg 17 0<o=0"<1, o+ JoJ=1. (23)

spaceH with involution J is defined similarly to footnote 52 for

symbolsB( ) satisfying linearity and the relations For any statev (quasi-free or not), we call the operator

oin (23) thedensityof w. Since the reference statg
{B()), B(9)} = (,9)1, B(Jf) =B(f). (4 from (8) is the product of quasi-free KMS states, it is
a quasi-free state with density
%6£°(H) denotes the operators of finite rank A

")(X) can be read off from (12) and (13), o0 =(1+ e_ko)_l,
v({z}) = —Az)(z[®o0s, 51y in (7) is the “self-dual second quantization” af
Pz, 4+1}) = cx® 03— 5. ® 02, ®2The Pfaffian of a matrixd € C>"**" is defined by
with ¢z = (Jz)(x + 1| + | + 1){z|)/2 ands, = (|z){z + 1| — B . -
4+ 1)(x])/(24) (using® ~ b & C2). pfA =3 sign(m) [ [ Arzi-1)mcan, (19)
8In reality, for this relation to hold, we have to impogé = T =t
—Fk*J which is satisfied by)(X). with the sum running over all pairings of the §ét 2, ..., 2n}, i.e.

*With conventionp(e') = 3=, _, ¢(x) e andh = L*(T).  the permutationsr in the permutation grougsz, which satisfy
9Sincen (') is not diagonal fory # 0, the dynamics does (25 — 1) < 7(24) andn (25 — 1) < 7(25 + 1).
not leave the first (and the second) factoh8f invariant. That's ~ %*Conversely, for any € L(h®?) satisfying (23), there is a
why the unified view in terms of a self-dual CAR algebra is usef unique quasi-free state € £(2A(h%2, J)) s.t. (22) holds (cf. [2]).
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whereko = frhr ® 0 ® Brhr.%* Proof Sincer{, 7t € Aut(2(h®2,.J)) are Bogoli-

ubov x-automorphisms, we have
Remark 13In the EBB model described below, we

start off at the point where we are now, i.e. we are 7, o 7 (B(f)) = B(e thoel® f),

directly looking at quasi-free fermionic systefi¥s. . .
and therefore, sincgg o 7, " = wo,

wor (B (fB9) =
wO(B* (e_lthoelthf)B(e_lthoelthg)).

Next, as described in Section 2, our goal is to construct
the Mgller morphismy, € Aut(A(h2,.J)),

Y4 =s—lim7;t o7t
=00 Hence, we are led to study the wave operatar <
Since the decoupled and the coupled time evolutigiih®?) from (24). In order to address this question,
groups7, and ', respectively, are given by Bogoli-we appeal to scattering theory for perturbations of
ubov x-automorphisms®, the problem of construct-trace class typ€8 Indeed, the decoupling perturba-
ing 74 reduces to the question about the existence (aftsh v given after (17) is of finite ranky € £°(H%?),
completeness) of the Hilbert space wave operdldrs and, hence, the classical Kato-Rosenblum theorem im-

on the one-particle spadg” of the self-dual Jordan-plies thatl¥, exist and are complete (cf. [43, p.193]).

Wigner fermions’ Moreover, due to the fact thatis given in the Fourier
. . - - - - ig
Wy = s — lim eite =101, (h). (24) plcture by the_ multiplication operatdn(e_ ) from (16),
t—o0 its spectrum is purely absolutely continudis,
Taking advantage of this reduction to a pure one- specg.(h) =0, specy,(h) = 0. (26)

particle Hilbert space scattering problem, we can _ _
prove existence and uniqueness of a quasi-free NE&ce the map’ — B(f) is continuous, we get
and identify its density with the help of the wave oper- X

v y P P WB()) = BOVE ).

ators (24).
Thus, the NESS has the asserted density,
Theorem 14 (cf. [4]) Let (A(5%2,J), 70) be theC*

dynamical system of the uncoupled XY chain with thew , (B*(f)B(g)) wo o v+ (B*(f)B(g))
local bond-coupling perturbatio’” from (7). If the —  wo(B (W™ /)B(W*g))
reference statesy € E(A(h¥2,J), ) is given by B .

(8), then there exists a unique quasi-free NESSe = (/,W-eoWWZg).
Y+ (wo, 7) With density 0

Remark 15This is the main argument which will

®More precisely, due to footnote 63, it is the restriction.af reappear in the context of the more general EBB model
to A(h)+ ~ A(Hh®?, J); which extends to the quasi-free state OBelow.
(%2, J) with densitygo.

%Up to the fact that we use the usual CAR algebra description .
and not the self-dual one. or the case of the XY chain, we can evaluate the

%A «-automorphism ofl(H, J) of the form density in (25). Letd = (Br + (Br)/2 andd =
ru(B(f)) = BUS), (Br = fL)/2
whereU is a unitary operator of satisfying|U, J] = 0, is called 8Also calledKato-Birman theory(cf. [43]).
Bogoliubovx-automorphism (cf. [2]). spec,,(A), spec, . (A), andspec,,,(A) denote the spectra of

®71ac(A) denotes the projection onto the absolutely continuottse restriction of the operatof on7 to the singular continuous, to
subspacéi..(A) of the operatord onH. For general scattering the absolutely continuous, and to the pure point subsgécg A),
theory, cf. [43] for example. Hac(A), andH,, (A), respectively.
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Theorem 16 (cf. [4]) The density, € £(h®2) of the The NESS of Theorem 14 has the following proper-

NESSu, looks like ties.
—kyy—1
o = (L+e7™)7, (27) Theorem 18 (cf. [4]) The NESS, of the XY chainis
wherek.,. can be expressed with the help of the asynfg) quasi-free,
totic velocityv_ of the dynamics generated by 2) independent ofy,
(3) translation invariant,
ki = (8 —dsignv_)h. (4) modular,

(5) afactor state,

Proof We write W* = i W} + igW};, where (6) and a(7, 5)-KMS state i3, = O = 5

Wi 5 = s —lim_,o e LR el are the partial ; _ ed in Th _
wave operators which project on the left and riglﬁiroo (1) Is contained in Theorem 14. Singe. €

reservoirs.’® Hence, since the asymptotic projectio I@@:) acts by multiplication Wit£@+(ei§) of the ex-
Prg = s —limy_o e iy gif pe can be written P icit form (28), we gex2), (3), an

a.sPLﬁ = WL,_RW:{L,R’ we find thato; has the form spec,(04) = 0.
given in (27) witH

Hence, using [2], the non-existence of the eigenvalue

kv = (8 = 6(Pr = Pp))h. 0 and 1/2 implies (4) and (5), respectively. Finally,
Moreover, since the asymptotic velocity. = it has been shown in [1] that, is the unique(r, 3)-
limy_ o e~ zeith existd?, we havéd KMS state if3;, = Br = 3 which implies(6). 0

Pr — Pr, =signv_.

Remark 19For 31, # (g, the NESSwv. is not only
not a KMS state w.r.t. the dynamieg (for any 3),
but there exists n@'*-dynamics on the Pauli algebra
G w.r.t. whichw, is a KMS state (cf. [34]).

Finally, using the form of, from (16), one can com-
putev_ explicitly.

Remark 17The Fourier transformed density, <
L(h%?) is an operator which acts by multiplication
with the function EBB model

(28) As described in the Introduction, we now turn to mod-
els of more general type which we call thctronic

where black box(EBB) model (cf. [9]). The so-calledim-

ple EBB (SEBB) is a special case of the more general

o1(e) = (1 + e_(ﬁh(eif)—ék(eif)))—1

)

ey B :
h(eig) : (,COS§ é\) “ U?i’: Vsing ® 0, EBB model. For the SEBB model, explicit computa-
k(e®) = sign(k(e®)) u(e®) ® oo, tions have been done in [7] (we will essentially restrict
() = 2Xsin€ — (1 —~%)sin2¢, ourselves to some remarks on the SEBB model, cf. [7]
p(e®) = ((cos& — A% +~%sin? €)Y/, for more details).
i, r denote the natural injectiod(Z )% — h®2. The EBB model describes a gas of noninteracting
;;We use basic facts from Kato-Birman theory and [22] only. fermions which entirely fills up a spatially confined
I the strong resolvent sense (cf. [36, p.284]). sampleS and a finite numbel/ of spatially extended
For self-adjoint operatord and A,,, one has . . . .
reservoirsk ; to which the sample is coupled by junc-
s —lim f(An) = f(s —res —lim Ay) tions. As it has been shortly explained in the case of

for f of characteristic function type (cf. [36, p.290]). the XY chain in the foregoing subsection, in order to
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set up such an ideal system, we only have to sp&or some cases we also assume time reversal invari-
ify the one-patrticle Hilbert spaces and the one-parti@dace (cf. footnote 38).

Hamiltonians of the sample and the reservoirs. £t

be the one-particle Hilbert space of the sample wifiSumption 22 (cf. [9])

Hamiltonianfs andb; the one-particle Hilbert space(TRI) There is an involution) on b s.t. jag = hoj and

of reservoir numbey with Hamiltonian;. The kine- ih = 1.’

matics of the EBB model is then given by the total _
one-particle Hilbert space Similarly to Theorem 14 for the XY chain, we have

the following theorem for the EBB model.

"=bs SR, b =E5b5, Theorem 23 (cf. [9]) Assume (H1)«(H3), and let
and2A(h) denotes th&*algebra oveh containing the wo € £(A(h), 70) be a gauge invariarit quasi-freé®
observables. reference state with densiyy. Then, there exists a

uniqgue NESSv, € X, ((h),7) whose restriction
Remark 20In the SEBB model, one haimbhs = 1 to 2(h..(h)) is the gauge invariant quasi-free state
(cf. [7]). with densitylV_ oo W*. Moreover, ifc € L£!(b), then
wy (dT(c)) = tr(oyc) with®
As in the XY chain, the decoupled and the coupled dy-
namics of the EBB model are specified to be Bogoli- ¢+ = W_ooWZ + Z L=(h)ool=(h). (30)
ubov x-automorphisms¢, 7t € Aut(2l(h)) generated s€specyy (h)
by the one-particle Hamiltonian of the decoupled sys-

tem, Proof Using (29), we write the matrix elements in
wo o TtH(a*(gn)...a*(g1)a(f1)...a(f,)) as

(eith [Lac(h)+ Lpp (R)]fi, QOeith [Lac(h)+ lpp(h)]gj)'

ho = hs © hr, hr = @;h;,

and by some one-particle Hamiltoni@gnof the cou-

pled system (compare with (15) and (18)) Whereas the ac-ac term yields the wave operdtér
_ _ the two ac-pp terms do not contribute in the large time
(a(f)) = a(e™ ), 7t a(f)) = a(e® f). limit due to the Riemann-Lebesgue lemma. Specializ-

ingtoc = f(g,-) € £°(h), averaging over the quasi-
In order to apply the scattering theory for perturbatiofériodic pp-pp term (and a density argument) leads to

of trace class type, we make the following assum{30)- O

tions. % induces a Bogoliubow-automorphism orR((h) with the
help of which one defines a state to be time reversal invaaint

Assumption 21 (cf. [9]) footnote 38). . o

(H1) ho and h are bounded from below 8A statew € £(2U(h)) is gauge invarianiff wo9¥* = w where

9° € Aut((h)) is generated bdI'(1).

p 1 75
(H2)r? —ry € £(h) forap € {~1} UN Identifying B(F) and B(JF) with creation and annihila-

(H3) specy.(h) = 0 tion operators on a CAR algebfd(PH) for a projection P
(H4) spec(hs) = 76 with JPJ + P = 1, the C*algebras(H, .J) and A(PH)
(H5) ran (h — hg) C ran hy are x-isomorphic. For a quasi-free state @nh), we have
_ w(a*(g)a(f)) = (f, eg) for somed < ¢ < 1, and (cf. (20))
74 t _t . .
Note thatry, 7° € Aut(2((h)) respect the involutios. (@ (gn) 0™ (91)alf1) -0 fin)) = Snm det{(fi, 09;)}. (29)

r(z) = (h—2z)~" denotes the resolvent af(and similarly for

ho). (H2) is supposed to hold on one point in the intersection of

the corresponding resolvent sets (then, it holds on all podits). 81, (h) denotes the spectral projection corresponding te
"spec,,. (A) denotes the essential spectrum of the opetdtor spec,,,(h).

€ess (
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Remark 24Compared to (25) and (26) for the XYLandauer-Buttiker theory, we want to derive an ex-
chain, there is a second term on the right hand of (3®ession for the mean EPR making use of statioffary
sincespec,,,,(h) is not assumed to be empty in generadcattering theory for perturbations of trace class type.
Motivated by (4) which relates the mean EPR to the
mean heat fluxes across the sample, we study the rate
of change of extensive thermodynamic quantities
generated bghargesg, i.e. by self-adjoint operators

on h which commute with the uncoupled Hamiltonian

In this section, we determine the mean EPR in the X%,8*

chain by direct computation, and in the EBB model

5 Entropy production rate

using the Landauer-Biittiker theory. o, = dl'(pg), (31)
where, formally,
XY model
d in it :
Since, in (28), we are given the explicit form of the ~ ¥q¢ = &et ge™ | ,_y = —i[h, ql. (32)

density of the NES%&, in the XY chain, the evalua-

tion of the mean EPR proceeds by direct computatiopince, in general, the observaldig describing the flux
across the sample generated by the charigenot an

element ofR((h) 85, we introduce a regularization in
(32) both for the Hamiltoniah and the charge. For
so-calledtempered charges, i.e. charges for which
g = q1(_ a1 (ho) € L(b) for all A € R, we define

Theorem 25 (cf. [4]) The mean EPR in the NEGS
of the XY chain from Theorem 14 is given by

5 [?"d h(é
Ep(ws) = ] / % Fl— ; ( “;2 5+ the mean fluxin the state ¢ £(2(h)) with density
0 ch”(Bu/2) + sh*(Bu/2) o€ L(h) by86
Therefore, . .
w(®,) = /\II_I,I;O}Z%M(Q)Z(A))
Ep(wy) >0 iff 3r # Bg. = lim lim tr(op”,)),
A—o0on—0 q

Remark 26Due to(5) in Theorem 18 is a factor where@"(A) - df((p”(A)), and
state. Hencew, is wo-singulaf! iff 3, # Ggr (cf. ! 1

L7D- &y = —ilFa(h) = fulho), ¢V (33)

83Stationaryscattering theory expresses the unitary evolution
groups in (24) in terms of the corresponding resolvents, taed
study of the large time limit is replaced by the study of therab

The Landauer-Bittiker theory of electronic transpo?{y values of these resolvents, the so-calledting absorption
rinciple (cf. [43, 153]).

describes the steal_dy currents across the sample \R/M@E_g g = h; for heat fluxes og = 1, for matter fluxes coming
the help of scattering ddtwhich involves the spe-from reservoirR, (1; denotes the projection gfontob;).
cific structure of the sample on its one-electron level*Recall that the second quantizatidh(c) is a bounded oper-

only (cf. [31, 19, 23]). In this subsection, using th&tr on the fermionic Fock space ougiff c € L'(h).
If w, € £(2(h)) is quasi-free with density, we have

EBB model

#letw € £(0). A linear functionaln € O* is calledw- wo(dT(e)) = tr(oc), ¢ L£'(h).
singulariff n > w’ > 0 for somew’ € N, impliesw’ = 0.
82The transmission probabilities.
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for f,(c) = (1 +ne)~P+ with p > 0.87 on hae(ho), we get the form (35) where the square
bracket is written as a difference of products of
the representatio (aWW_, ¢) of aWW_ on thee-fiber
Remark 27Since ¢, has the structure of a comof b,.(ho) for a = z,y,2q™, yg™. Now, due
mutator, the mean flux, (®,) in the NESSw, € to (36), Z(aW_,¢) can be expressed by means of
¥+ (wo,7) is independent of the point spectrum corpoundary values of bordered resolvents)(z)b for

tribution in (30), a,b € £%(h).°1 Using the stationary representation
of the scattering matrixS(e) (cf. [43, p.182]), we
w+(<I>Z(A)) = tr(W_goWi<pZ<A)). (34) get (35), where, in the square bracket, we still have

¢ instead ofg. With the help of the assumption

. . ] ess sup 00(e)]| |lg(e)|| < oo and the esti-
The next theorem contains the main assertion about the. o> ccspecc (o) |20 ()]

relation of the mean flux in the NESS, and the un-
derlying scattering theory (tHeandauer-Biittiker the- / de 1S() — 11 < |[v|ls 37)
ory) expressed by the unitascattering operator spec, . (ho) 2T - ’

S=Wiw_. we can take the limif\ — oo which yields the asser-
tion. O
Theorem 28 (cf. [9]) AssumgH1)-(H3). Letw, be
the NESS in the EBB model from Theorem 23, aﬂgndauer—BUttiker formula.

let ¢ be a tempered charge. dbs sup.cqpec, . (ho) (1 + | order to make contact with the usual form of the

)P oo(e)l lg(e)|| < oo, therP® Landauer-Bittiker formula, we require the sample to

de be confined. Using the unitarity of the scattering op-

wi(Dy) :/ — tr(oolg—S5"¢S]).  (35) erator, we get the following corollary from Theorem
spec,. (ho) 27 28.

Theorem 29 (cf. [9]) Assume in additior(H4), and
let the reservoir density of the reference state be of the
form @jfj(hj).gg’ If g = @jgj(hj), then®*

Proof Letp = —1.89 Since, by assumption (H2)
v="h—hg € L'(h), we can writ&°

U= x*yv T,y € ﬁz(h) (36) de
or@) =3 [ETafelo—g).  @9)
Plugging (36) into the commutator (33) of (34) and 3k
passing into the spectral integral representatiohqof

87Using (H1) and (H2) in Assumption 21 and Lemma 3.1 in [9], Fora, b € £2(H), the operator-valued function
we havef, (h) — f,(ho) € L' (h). Moreover, ifg € £(h), we can
drop theA-regularization. ar(e +140)b

50, ¢, and S commute withhe. Hence, in the direct integral
representation ofo on hac(ho), they are given by somgy(¢),
q(e), andS(e), respectively (cf. [9]). i :

#Using Birman'sinvariance principle the overall strategy of VS, the fiber Hilbert space. _
the proof forp € N remains unchanged. The invariance principle _Jnder (H4), expectations of flux observables in the NESS
addresses the question about the invariance of the wavetoper '€ 4|ndependent of the reference state of the sample, cf. [9]
W under the transformation af, andh into ¢ (ho) ande(h) for Thetotal transmission probabilitys given by
so-calledadmissiblefunctionsy (cf. [43, p.86]). ) _ ) * , _ s ,

%E.g. using the polar decompositionof £(H) denotes the Tiw(e) = tr(tn()t3e(€)), - Sin(€) = O A1 (€).
Hilbert-Schmidt operators oH. The integration is carried out ovepec, . (h;) N spec,. (hx).

has a limit in£?(H) for § — 0 for a.e.c € R (cf. [43, p.192]).
92Cf. [43, p.249]. The trace norm on the left hand side is taken
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Remark 30The mean flux in (38) can also be writ6 ~ Linear response theory
ten in the formw  (®,) =", [9= Tjr (f; — i) 95-

Hence, it vanishes if all reservoirs have the same d¢f/BB model

sity or, from (38), if®, is the totalg(ho)-flux entering

the sample. Analogously to Section 3, we denote hy =

(zh, .. 2l 2$, .. 28) the thermodynamic forces

ey by EEPRIY

h c
Let us now focus on the physically interesting NESS %j = Pea = Bjs - 25 = Bjtj — Peatteq

w in which the reservoirs are in thermal equilibriung,. <ome reference temperatufe, and some refer-

atinverse temperaturet with chemical potentialg;.  once chemical potentigle,. Moreover, letf.,(c) =

Hence, the mean EPR looks like (1 + efale=rea))=1 pe the density of the gauge-
invariant quasi-free equilibrium state,, € £(A(h))

Ep(wi) = — Y Bi{w (@) — pjwy (85}, atinverse temperaturé,, with chemical potentiae,.
J In the present context, the kinetic coefficients from

Section 3 have the form

where®!? = @), and®$ = &, (cf. (4)). Leté;(e) = P

Bj(e — ;) andF(z) = (1 4+ e%)~'. Then, the mean L = 5w w+ (@]

EPR has the following properties. J B
whereu, v € {c,h}. Inthe following theorem, the first

Theorem 31 (cf. [9]) AssumeH1)-(H4). If f;(c) = WO assertions follow from Theorem 31 and (a gener-

(1 + %i(e=r))=1  therf® alization of) (37). For a proof of the GKF, cf. [9].
de Theorem 33 (cf. [9]) Assume(H1)-(H4). Then, the
Ep(wy) :Z/%gj T (F(&)—F(&))- kinetic coefficients in the NESS of the EBB model
Gk look like®’

de
Moreover, Ep(w;) > 0, and Ep(wy) > 0 if some L;; = —/— M foo (1= foq) (Th5— i Tik)-

2
B # Br or pj # e k
If (H1)-(H4) and(TRI) holds, then we have the ORR,

he _ jch
Proof The form of the mean EPR directly follows Lij = Lji-
from (38) Moreover, the Unitarity of the Scattering Oq:ina”y, if (Hl)—(H5) with p = —1 and (TR') holds,
eratorS allows to establish a lower bound &@b(w+)  then we have the GKE
whose explicit structure leads to the last two assertions ’
(cf. [9]). 0 N I

-T

Remark 32The Landauer-Biittiker theory has already

been applied to the SEBB model in [24]. Remark 34In the SEBB model, the relevant actions

PY— ; o of the wave operator can be explicitly evaluated. This,
The integration domain ispec,.(h;) N spec,.(hx). . .. . L
%More preciselyEp(w+ ) > 0 if channelj — k is openi.e. if N UM, leads to explicit expressions for the kinetic co-
efficients, and, hence, the ORR and the GKF can be
£({e € spec,c(h;) Nspec, (he) : Tix(e) # 0}) >0 verified by direct computation (cf. [7]).

for the pairj, k (and £(+) is the Lebesgue measure; cf. [9]). 9With ny, = 1, n. = 0. The integration domain igec, (ho).
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Remark 35The ORR and the GKF have been derivetheorem 37 (cf. [5]) Assume(E;) and (C;) for all

axiomatically for more general classes of open sys—= 1,..., M. Then, for sufficiently smal, if there

tems in [29]. are somes; # f3;, the mean FGR EPR is strictly posi-
tive,

7 Weak coupling theory Epgg(ws+) > 0.

As discussed in Section 3, we want to establish a crifyoof Let us denote byKg the adjoint of Ky w.r.t.
rion which guarantees the strict positivity of the medhe scalar produdtX,Y’) = tr(X*Y’) (cf. Section 3).
FGR EPR. To this end, let us consider an open syshce

tem consisting of a finite dimensional samg@eawith .

HamiltonianHs € Os which is coupled to reservoirs Eppg:(w) = Z Eprgr; ()

in (7r,, 3;)-KMS stateswg; by the the local pertur- ’

bation \V with real coupling parametex, and lety for anyw € &£(Os), the total mean FGR EPR van-

be of the forml” = 3~ V; with ishes iff each nonnegativépy,, ;(w) vanishes. Under
the assumption (B and (G), the only state in the ker-
V= Z Q5 @, nel of K ; is the unique(rs, 3;)-KMS statews, (cf.
o [32]). Moreover, it is the only state with vanishing

whereQ;“ € Og andv]‘-“ € Og, are self-adjoint. As mean FGR EPR (cf. [32]),
discussed in Section 3, in order to establish such a cri- Epfgrj(wﬁj) =0.

terion, we make a first assumption on the effective cou-

pling of the sample to the reservoirs and a second gn@ce the assumption (Fand (G) also imply that the
being a non-degeneracy condition for the Davies geffe! of the total’s is nondegenerate (cf. [32]), the
erator. The first assumption is formulated with the hefigSertion follows if there are sorge 7 ;. .

of the Fourier transform of the time correlation func-

tions of the reservoir part; of the coupling, Remark 380ne easily constructs examples which il-

00 ¢ on B et lustrate that the conditions of Theorem 37 are suffi-
/ oodt wr, (TR, (V5) V) e, cient but not necessary (cf. [5]).

whereas the second assumption involves the commRe@mark 39As discussed at the end of Section 3, the
tant (cf. footnote 16), goal is to use this algebraic criterion to prove strict
positivity of the entropy productioRp(w.) of the full
microscopic model. This is achieved as soon as, for

sufficiently small), the relation

Q:j = {HS,Q? all Oz}/.

Assumption 36 (cf. [5])
(Ej) hj(e) > 0forall e € spec(—ids)%® Ep(wy) = A2 Epfg, (ws) + (’)()\3) (39)
C)e, =C1
(©) & is established. This has been done for a finite dimen-
We can now formulate our criterion for the strict posgional sample coupled to two fermionic reservoirs (cf.

tivity of the FGR EPR. The FGR NESSs. is given [28]) and for the SEBB model (cf. [7]).

in (5). Theorem 40 (cf. [5]) If the assumptions of Theorem
%We denote byh; () the matrix with entries:” (). More- 37 and(39) hold, then, for sufficiently smal,

over, recall thahs = i[Hs, ] denotes the generator ef €
Aut(Os). Ep(w4) > 0.
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8 Correlations of o4 (e€) from (28) which, after an explicit computa-
tion, takes the form

In this last section, we will study some more correla- 24 sign(x)sh(dp) 2
tion functions in space and time of certain types of o6% (n) = — (/ & T8 L sin(nf))
servables in the foregoing NESS of the XY chain and o 2m ch(Bu) +ch(op)

in more general quasi-free states. As spatial correla- +R(n),

tions, we tre_at the SPin-spin coupling and the ?mp{[/{/'here the remaindeR(n) is exponentially decaying
ness formation probability, and as a correlation 1n

. . . or largen. Due to the discontinuity in the integrand,
time, we study the moment generating function of th g o .

. the claim follows by partial integration. O
Gallavotti-Cohen symmetry.

XY model . : . :
Naturally, we are also interested in the spin-spin cor-
We start off with the truncated two-point function ofelation in the transversal directions. Unlike in the
the longitudinal® spin-spin correlation, longitudinal correlation functio”? (n), the number
of fermionic events involved after the Jordan-Wigner
CT(n) = w+(o§0)o§”)) - w+(o—§0))2, transformation increases linearly #nin the transver-

sal correlation functiot*
wherew, is the unique NESS of Theorem 16 with

density (27). C(n) = wy(oVol™).

In contrast to the situation in thermal equilibrium, i.€rphis is due to the non-local nature of the Jordan-

for 5z = [r, where the decay is exponential (Chyigner transformation (9) in the transversal direction,
[33, 35, 14]), the out of equilibrium decay in the lon-

- AV ) 1
gitudinal direction is polynomial only. a&") . (H(Qa}iak - 1)) (0 +0)
Theorem 41 (cf. [4]) The decay of the longitudinal k=1

truncated two-point functio’s'(n) in the NESSor it ) ~ 9 (¢f. after (9))192 With the help of the Bogoli-
of the XY chain behaves like ubov_*-automorphisnn € Aut(A(h®2,.J)) of trans-

lations (cf. footnote 66),

7(B(f)) = B(Usf),

0 < limsup |n2CT (n)| < oc.

n—oo

Proof With the help of the Jordan-Wigner transforma¥herelz = u, © u, and (uz)(y) = ¢(y — ) for
tion (9), the longitudinal correlation functio6 (n) ¢ € b, we define the form factors by

becomes a four-point function in the Jordan-Wigner

fermions, and so for alk independently of their dis- Faj-1="Ujg0,  fo = Ujgn, (40)
tance from the origin® Hence, uTsing the fact that, wherego = [~3_1,5_1] andgy = [0, 5. Hence, we
is quasi-free, the_ evaluanon_«ijf3 (n) b0|ls_ down to .o express the correlation functio®s

study the determinant of the inverse Fourier transform

C(n) =pf Q(n). (41)

9| e. in the 3-direction. The 1,2-directions dransversal
100The relation (9) is local in the 3-direction , i.e.

owe studyo ” o™, the 2-direction being analogous.
o™ = 2a%ay — 1. 925imilarly, 0$™ = iTS™ (a, — a).

198Recall that(n) is the correlation matrix from (21) angf is
the Pfaffian from (19).
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Since, by definition,Q(n) is skew-symmetric, theProof We know from assertio(8) of Theorem 18 that
square of the correlation becomes a determinaat. is translation invariant, i.e.

Moreover, using the definitions
W4 0Ty = wq.

i sh(aypu(e')) Hence, due to the structure of the form factdrs
o (€)= G T h(wp(e®))’  in (40), the correlation matri(n) is a2 x 2-block
ey cosE— A4iysiné Toeplitz matrix. Moreover, since the density from
q(e®) = 1u(e€) € (28) is in L3S, (T), we get the assertion by invoking
Toeplitz’ theorem of footnote 104. O
for a,a’ € R, we have the following fundamental ob-
servation.

Therefore, in order to estimate the decay rat€'6f),

we have to study the asymptotics of the determinant of
Theorem 42 (cf. [6]) The transversal spin-spin cor-3 non-scalar Toeplitz operator. Due to the general lack
relation functionC'(n)? in the NESSvy of the XY of control of the spectrum of a non-regular non-scalar
chain is the determinant of the finite section of Poeplitz operator in the vicinity of the orighff, we

Toeplitz operatofl'[a] € L((5(N)),** focus on an upper bound on the decay rate. The proof
of the next assertion is given after Theorem 47 in the

2 _ . .
C(n)” = det Tp[al, setting of more general quasi-free states.

where the2 x 2-block symbol has the fortfp Theorem 43 (cf. [6]) The decay rate of the transver-
_ sal correlation function in the NESS, of the XY
o= | “PepSIENE - —P85q € L3 ,(T) chain has the strictly negative upper bound of the form
> .

08,64 ©5,8 S1gN K

. log |C(n 1 2rq
hmsupw < 5 Z /0 % log th(B;11/2).

104An N x N-block Toeplitz matrixA € CN™*N" is a matrix — n—oo .
NxN L ; J=L;R
whose block elements;; € C depend oni — j only, i.e.

ao a—1 - a,(nfl) .
a ao ... A_(n-2) In order to learn more about the correlations out of
A= : : - : : equilibrium, we study two other types of spatial cor-
Gt ans o a relations in the NESS/, of the XY chain, namely at

thevon Neumann entropy densénd at theemptiness

An infinite N x N-block Toeplitz operator is defined as foIIowsform(,ﬂion probabilityboth of whose asymptotics can
Let f € ¢%(N) be aC"-valued sequence which is square- v b db t Toeolitz th Th
integrable w.r.t. the Euclidean norm @1, and leta, be a se- eventually be treated by means of Toeplitz theory. e

quence of complexV x N-matrices. The action of a Toeplitz op-vOn Neumann entropy is defined by
erator is defined by — {Z;’il ai—; fj}i21. Due toToeplitz’

theorem(cf. [15]), such an operator is ifi(¢3 (N)) iff Ent(n) = —tr(wf) log wg-n))v
- /2"g () 0712 wherewsr") denotes the restriction of the NESS to
=)y wmHe the subblock of. neighboring spins on the chain. Let

for somea € L. n(T), where LY, (T) denotes the YS denote by)(x) = —xzlogz — (1 — z)log(1l — x)
CN¥*N_valued functions onT whose components are all inthe so-calledshannon entropyThen, we have the fol-
L>=(T). Using the projectionP,({z1,...,zn,zns1,...}) = lowing theorem about the asymptotics of the von Neu-

{z1,...,2,,0,0,...}, we define thefinite sectionof Tla] by mann entropy density.
T[a] = P,T[a]P, on the range of,.

105A Toeplitz operator and its symbol are callschlariff N =1  %This is due to the fact tha@oburn’s Lemmaéas no analog in
andblockotherwise. the block case (cf. [15, 186]).
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Theorem 44 (cf. [8]) The asymptotic von Neumantasting it again into the form of a block Toeplitz deter-
entropy density in the NESS, of the XY chain is minantdet 7},[a], we can extract the subleading order

strictly positive, g in the largen asymptotics from Fisher-Hartwig the-
) ) ory (cf. [16, p.582])L08
. Ent(n 1 Td¢
=3 ZL:R /0 5 S(th(B;n/2)), det Ty, [a] ~ G[b]" " 'nF b, t;, 0, 5;].
.]: b

Here, the Fisher-Hartwig symbaelhas the form

(I(t) = b(t) H |t - tk’|2ak (10(5k7tk (t)v te T7
k

wheres(z) = n((1 + z)/2).

Proof We start off by constructing the Majorai¥a
correlation matrixQ2(n);; = w4 (d;d;) whose imag-
inary part turns out to be the finite section of
2 x 2-block Toeplitz operator with some symbaol e

wheret;, describes the location of singularitiel(t)

is sufficiently regular, angs, ,, (t) is thepure Fisher-
artwig jumpwith jump phaserd,. Moreover, the

. ) function F is independent of.. 1°° The following

oo

3x2(T). Moreover, there exists a set of fermions effect of the true non-equilibrium on the asymptotics

in the CAR _algebra_zl((hnrﬁ) overh, = C* s.t. the re- of the emptiness formation probabilify(n) is studied
duced density matrix "~ has the form in [12].

(n)—ﬁ(lJr/\’('n) e 1_’\z('n) *)

5 GG + 5 GG Theorem 45 (cf. [12]) The subleading ordeg of the
emptiness formation probabilit)(n) in the NESS,
(n) of the isotropic XY chain is strictly positive iff;, #
where=+i\;’ € spec(T,[a]). Hence, from the spec-g...

tral representation as'™, we have

Ent(n) — Z 3()‘@@)- EBB model
i=1 In this final subsection, we derive a condition on the
i ) ) . symbol which implies exponential decay in more gen-
Sm_ceHTn[a]H S ¢ < 1 uniformly in n, Sze@’s f|rsF eral quasi-free modefs® For this purpose, we start
I|m|t theorem in the block case (cf. [15, p.202]) ImEzlirectly in the (self-dual) quasi-free setting on the dis-
plies the assertion. crete line, i.e. we pick any quasi-free state ¢
E(A(H2,.J)) with densityp € L£(h®?) satisfying the
At the end of this subsection, we discuss the correkenditions (23), and study the correlati6i{n) given
tion function mentioned above in which the effect dfy (41) under the following assumptions.
the singularity of the symbaqi,. in (28) becomes vis-
ible (at least in the isotropic cage= 0). This is the
case for the so-callegimptiness formation probability

Assumption 46 (cf. [10])

(A1) The quasi-free state is translation invariant.
(A2) foj—1=Ujgo and fo; = Ujg1

P(n) = w, (MOTI® 1), (A3) go = [~0-1,6-1] and g = [do, do]

108The Fisher-Hartwig theorydescribes the asymptotic behavior

wherell?) = (1— 0’;(;,]))/2 is the orthogonal projectionof Toeplitz determinants for a class of symbols whose syl

onto the spin down direction. In this correlation, aftelo not allow for an analysis by Sz&g theory.

0% 0r the precise formulation of the conditions in tRisher-
079, self-adjoint operatorsl; on C2" satisfying{d;,d;} = Hartwig theoremcf. [16, p.582].

26,; are calledViajorana operators 10ct, Remark 50 for the correlation in time mentioned above.
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Due to (Al), the density is, in the Fourier picture, Remark 48In the example of the XY chain out of
an operatop € 6(6@2) which acts by multiplication equilibrium, Theorem 47 yields the expression already
with the functiong(e'¢) € L3S, (T). With the help of found in Theorem 43. In the case of thermal equilib-
the spectral set rium, 5, = (g, the spectral condition is still satisfied
. and our bound is exact. At zero temperature, the spec-
T={¢e0,2m)|1/2 ¢ specs(e) Z {0,1}},  tral condition is not fulfilled anymore. Indeed, there
exists long-range order or quasi-long-range order de-
we derive the following upper bound on the decay rg{@nding on the anisotropy and the magnetic field
limsup log(|C(n)|)/n. (cf. [10]).

Remark 49With an analogous argument, we can give
a sufficient condition on the spectrum of the dengity
which guarantees the exponential decay for the empti-
ness formation probability correlation from the previ-
ous subsection (cf. [12]).

Theorem 47 (cf. [10]) Letw € E£(A(H%2,J)) be a

quasi-free state with density ¢ £(h%?). Assume
(A1)-(A3), and let£(%) > 0. Then, the decay rate
of the correlation functiorC'(n) has a strictly nega-
tive upper bound of the form

‘ log |C(n 1 [ de " Remark 50Finally, we are interested in the
lim sup % < 5/1% log | det(24(e**) —1)|.  Gallavotti-Cohen(GC) symmetry
e(1—=X) =e(N)

Pr(_)of Due (Al)_(A:”_)’ the corre!a_tion[?(n_) can be for the limit of the moment generating function
written as the determinant of the finite section aka-

block Toeplitz7[a] with some symbot € L35 4(T).
Introducing a strictly positive and uniform gap at the
tam-Partne theoreift s that the decy rage1ore? S of heform (31) an (32). Usin the asymp-
is bounded from above by totic theory of block Wlener—Hop?c determlnants(,)\_)
can be expressed by the scattering operator as in Sec-
27 Q¢ Ve e tion 5. Numerical evidence is given in [13] for invalid-
/O 5, trlog (a”(e®)a(e™)), ity of the GC symmetry, a point which remains to be
studied in more detail.
where log’(x) denotes the logarithm regularized
w.r.t. the gap. Using the fact thateta(els) =
— det[24(e!¢) — 1] and some basics from Toeplitz the-
ory, we get the assertion. O

1 S
e(A) = tll)rglo n log w+(e‘)‘f§d” (@),

11The Avram-Parter theorenn the block case states that for a
block Toeplitz operator with symbal € L%, x(T) and singular

valuestg.”), one has

1 1 [?"de
nlﬂlmoo Nn = 9((&;7)") N /(; 2m tr(g(a’a))

whereg € Cy(R) (the functions of compact support; cf. [15,
p.186]).
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