Aspects of Open Quantum Systems and the Hartree Equation

W. H. Aschbacher, Theoretische Physik ETH Zürich

At ENS Cachan, February 16, 2001

Physics, Analysis, Numerics

Time-Independent Hartree Equation

- 1. One motivation from physics: Bose-Einstein condensation (BEC) in trapped gases
- 2. Symmetry breaking regime at finite coupling
- 3. Numerical approach to symmetry breaking

Time-Dependent Hartree Equation

1. Weak coupling limit of bosonic system and Newtonian limit of Hartree equation

- 2. Analysis of numerical scheme
- 3. Numerical approach to long-time behavior

Time In-Dependent Hartree Equation

1. Motivation from physics: Bose-Einstein condensation (BEC) in trapped gases

Series of seminal experiments 1995 on rubidium Rb₈₇, sodium Na₂₃, lithium Li₇: sharp peak in velocity distribution !
 [Anderson et al. 95], [Davis et al. 95], [Bradley et al. 95]

 ● Rigorous description of BEC for very dilute gases based on analysis of weak coupling limit of large bosonic systems
 [Hepp 74], [Lieb,Seiringer,Yngvason 99], [Fröhlich,Tsai,Yau 00]
 ⇒ Hartree theory !

Images of the velocity distribution by Anderson *et al.* (1995), taken by means of the expansion method. The left frame corresponds to a gas at a temperature just above condensation; the center frame, just after the appearance of the condensate; the right frame, after further evaporation leaves a sample of nearly pure condensate. The field of view is $200 \mu m \times 270 \mu m$, and corresponds to the distance the atoms have moved in about 1/20s. The color corresponds to the number of atoms at each velocity, with red being the fewest and white being the most.

 \bullet Condensate wave function ψ is solution of Hartree eigenvalue problem

$$\left(-\frac{\hbar^2}{2m}\Delta + v + \gamma V * |\psi|^2\right)\psi = \epsilon\psi$$
$$\|\psi\|_2^2 = N$$

m: mass of boson

- v: external potential: the trap
- γ : Hartree coupling
- V: two-body potential of boson-boson interaction
- N: number of bosons in the system

• BEC-scenario: mean interboson distance $d \gg$ range of V, V repulsive $\Rightarrow V = \delta$: [Gross-Pitaevskii] (GP)

• Regime of very dilute and cold gas:

[Low energy scattering theory] \Rightarrow details of V irrelevant, boson-boson interaction characterized by scattering length a alone:

$\gamma \propto a$

• Rescaling to dimensionless variables: energy unit: ground state energy $\hbar\omega_v$ of linear operator $-\frac{\hbar^2}{2m}\Delta + v$ length unit: $\Delta_v := (\frac{\hbar}{m\omega_v})^{1/2}$

$$\left(-\frac{1}{2}\Delta + v + g|\psi|^2\right)\psi = E\psi$$
$$\|\psi\|_2^2 = 1$$

with

$$g \propto N rac{a}{\Delta_v}$$

• Mainly interested in attractive interatomic forces: Li₇ has $a = -1.45 \cdot 10^{-9}m$! [Abraham et al. 95]

• Bosons with *attractive* interactions may collapse into clusters of very high density:

Propose reintroduction of less coarse-grained resolution of bosonboson interaction:

$$\left(-\frac{1}{2}\Delta + v + gV * |\psi|^2\right)\psi = E\psi$$
$$\|\psi\|_2^2 = 1$$

where V is of positive type and g < 0 (short range attractive)

- Experiment: Li₇-gas undergoes collective collapse, if $N > N_c$
- Minimizer Φ^{GP} of GP functional (p=3)

$$\mathcal{H}_{g}^{GP}[\bar{\psi},\psi] := \frac{1}{2} \|\nabla\psi\|_{2}^{2} + g\|\psi\|_{p+1}^{p+1}$$

For g < 0:

$$\mathcal{H}_{g}^{GP}[\bar{\psi}_{\lambda},\psi_{\lambda}] = \lambda^{2} \|\nabla\psi\|_{2}^{2} + g\lambda^{d/2(p-1)} \|\psi\|_{p+1}^{p+1}$$

for $\psi_{\lambda}(x) := \lambda^{d/2}\psi(\lambda x), \ x \in \mathbb{R}^{d}, \ \lambda \in \mathbb{R}^{+}$:

$$p < 1 + \frac{4}{d}$$

 \Rightarrow for p = 3, $d \geq$ 2: bottom drops out ! \Rightarrow GP theory breaks down at the collapse point of the condensate if g < 0 ! • Unlike GP, minimizers Φ of Hartree functional

$$\mathcal{H}_{g}[\bar{\psi},\psi] := \frac{1}{2} \|\nabla\psi\|_{2}^{2} + (\psi,v\psi)_{2} + \frac{1}{2}g(\psi,V*|\psi|^{2}\psi)_{2}$$

exist for g < 0 if $g_c < |g|$ for some *positive* g_c , even for v = 0 ! Length scale Δ_H set by Hartree minimizer Φ in trap v of same order as Δ_v

$$\Delta_H pprox \Delta_v,$$
 for $|g| < g_c,$ $g < 0$

whereas Φ still exists, and

$$\Delta_H \ll \Delta_v,$$
 for $g_c < |g|, g < 0$

and Δ_H independent of trap v.

• *neglect*:

- Inelastic collisions and recombination close to collapse, as well as interactions of electrons and nuclei with em field

- Short range *repulsive* interactions between bosons

 \Rightarrow two-body forces *purely attractive*

 \Rightarrow system *not* thermodynamically stable (g < 0 fixed, ground state energy scales like $-O(N^2)$ as $N \to \infty$)

• In mean-field regime, $N \to \infty$ and κN constant, a dilute gas of bosons well discribed by Hartree theory ! [Hepp 74],[Fröhlich,Tsai,Yau 00]

Hartree theory meaningful at collpase point and *beyond* ⇒ serves to describe *qualitatively* features of system close to collapse!
 None of these processes can be described by GP !

2. Symmetry breaking regime at finite coupling

• Symmetry properties minimizer Φ of Hartree functional for large negative coupling g,

$$\mathcal{H}_{g}[\bar{\psi},\psi] = \frac{1}{2} \|\nabla\psi\|_{2}^{2} + (\psi,v\psi)_{2} + \frac{1}{2}g(\psi,V*|\psi|^{2}\psi)_{2}$$

- Existence of g_c : variational methods [Lieb 77]
- Size of g_c : [Birman-Schwinger] $\Rightarrow g_c > 0$ for V short range, $d \ge 3$

E.g. [Cwikel-Lieb-Rozenblujm bound] Let $d \ge 3$ and let N(W) denote the number of bound states of $-\Delta + W$ on $L^2(\mathbb{R}^d)$. Then, there exists a constant $c_d \in \mathbb{R}^+$ such that

$$N(W) \leq c_d \, \int_{\mathbb{R}^d}\!\! d^dx \; |W_-(x)|^{d/2}.$$

 $g_c = 0$ for V long range, $d \ge 3$, and for d = 1, 2 !

• Non-uniqueness of Hartree minimizer Φ for sufficiently large coupling [Aschbacher,Fröhlich,Graf,Schnee,Troyer 00]

Theorem 1 (Symmetry breaking) Let $V = |x|^{-1}$ in \mathbb{R}^d , $d \ge 2$, $v \in C_b(\mathbb{R}^d)$. If, for some G in the group of Euclidian motions E(d), any v-minimizing sequence $x_k \in \mathbb{R}^d$

 $\lim_{k\to\infty} v(x_k) = \inf_{x\in\mathbb{R}^d} v(x) \quad \text{fulfills} \quad \liminf_{k\to\infty} |Gx_k - x_k| > 0 \ (S),$ then, for sufficiently large N, any minimizer Φ of the Hartree functional satisfies

$$|\Phi \circ G|^2 \neq |\Phi|^2.$$

In particular: If v has symmetry $G \in E(d)$ \Rightarrow minimizer breaks symmetry of v for sufficiently large coupling !

- Examples:
- (1) Potential well at origin
- (2) Potential well *not* at origin
- (3) Mexican hat at origin
- (4) Double well symmetric w.r.t origin
- Propose experiments for symmetry breaking with magnetic traps !

Remark

Theorem 1 also holds true for $V \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$ is of *positive type*

• Sketch for Proof of Theorem 1 "Free" functional:

$$\mathcal{E}_{g}[\bar{\psi},\psi] := \frac{1}{2} \|\nabla\psi\|_{2}^{2} + \frac{1}{2}g(\psi, V * |\psi|^{2}\psi)_{2}$$

$$E[N,g] := \inf \{\mathcal{E}_{g}[\bar{\psi},\psi] | \psi \in W^{1,2}(\mathbb{R}^{d}), \|\psi\|_{2}^{2} = N\}$$

Step 1: Concentration

Given $\delta > 0$, there is $\eta > 0$ such that, for N large enough, any wave function ψ with $\|\psi\|_2^2 = N, \mathcal{E}_{-1}[\bar{\psi}, \psi] \leq (1 - \eta)E[N, -1]$ (η -approximate minimizer) fulfills, for some $y \in \mathbb{R}^d$,

$$\int_{B(y,\delta)} d^d x \, |\psi(x)|^2 \ge (1-\delta) \, N.$$

13

Step 2: Localization Let $v \in C_b(\mathbb{R}^d)$ and $\epsilon, \delta > 0$ be fixed. Then, for N large enough, any minimizer Φ of

$$\mathcal{H}_{-1}[\bar{\psi},\psi] = \mathcal{E}_{-1}[\bar{\psi},\psi] + (\psi,v\psi)_2 \|\psi\|_2^2 = N$$

satisfies

(i)
$$\int_{B(y,\delta)} d^d x \, |\Phi(x)|^2 \ge (1-\delta)N$$

(ii)
$$\inf_{x \in B(y,\delta)} v(x) \le \inf_{x \in \mathbb{R}^d} v(x) + \epsilon$$

Step 3: Theorem 1 Reductio ad absurdum • Uniqueness of the Hartree minimizer Φ for sufficiently small coupling [Aschbacher,Fröhlich,Graf,Schnee,Troyer 00]

Theorem 2 (Positive critical coupling in $d \ge 1$)

Let $V \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$ be real-valued, $v \in C_b(\mathbb{R}^d)$, $d \in \mathbb{N}$, such that

$$H_0 := -\frac{1}{2}\Delta + v$$

has an isolated ground state.

Then, for sufficiently small coupling |g|, there exists a unique nonlinear ground state ψ , $||\psi||_2 = 1$, of

$$H_g^{(\psi)} := H_0 + gV * |\psi|^2.$$
(1)

This implies that, in any dimension $d \ge 1$, symmetry breaking occurs above a strictly positive critical coupling g_* only, $|g| > g_*$.

• Sketch for Proof of Theorem 2

Step 1: Linear part and analytic perturbation theory [Weyl] $\Rightarrow \sigma_{ess}(H_0) = [0, \infty[$ By assumption: $E_0 := \inf \sigma(H_0) \in \sigma_p(H_0)$ isolated in $\sigma(H_0)$ $\Rightarrow E_0 \in \sigma_d(H_0)$, i.e. dim Ran $P^{H_0}(E_0) < \infty$ e^{-tH_0} positivity improving for all t > 0[Perron-Frobenius] $\Rightarrow E_0$ is nondegenerate with strictly positive eigenfunction ψ_0 For |g| sufficiently small: $H_g^{(\psi)}$ is analytic family in the sense of Kato [Kato-Rellich] $\Rightarrow \exists !$ isolated nondegenerate eigenvalue $E_g^{(\psi)}$ of $H_g^{(\psi)}$ near E_0 and $E_g^{(\psi)}$ is analytic in g Step 2: Nonlinear part and contraction mapping principle

$$S := \{ \psi \in L^2(\mathbb{R}^d) \mid \|\psi\|_2 = 1 \}$$

$$P_g : S \to S$$

$$\psi \mapsto P_g[\psi] := \frac{1}{c_g^{(\psi)}} \frac{1}{2\pi i} \oint_{\mathcal{C}_{\varepsilon}} dz \, [H_g^{(\psi)} - z]^{-1} \psi_0$$
with $\mathcal{C}_{\varepsilon} := \{ z \in \mathbb{C} \mid |E_0 - z| = \varepsilon \}$ and normalization $c_g^{(\psi)}$

 $[Banach] \Rightarrow Fixed point of P_g$: unique nonlinear ground state !

3. Numerical approach to symmetry breaking

HARTREE-package:

- Numerics: dyadic mesh, bilinear Finite Elements
- Implementation: BLITZ++

[Veldhuizen 98]

Hartree eigenvalue problem:

$$h^{(n)-2}\left[\frac{1}{2}A^{(N)} + v^{(N)} + g W^{(N)}[\psi^{(N)}]\right]\psi^{(N)} = E^{(N)}\psi^{(N)}$$

• MFFT Mixed Radix Fast Fourier Transform [Petersen 84] Fast evaluation of Hartree energy: $O(N \log(N))$ (MFFT), O(N) (Multigrid) in nonconforming approximation:

$$\tilde{W}^{(N)}\left[\psi^{(N)}\right]_{(i,j),(k,l)} = \delta_{ik}\delta_{jl}h^{(n)4}\sum_{i',j'=0}^{n-1}\left|\psi^{(N)}_{i'j'}\right|^2 \frac{e^{-\alpha h^{(n)}}\sqrt{(i-i')^2 + (j-j')^2}}{h^{(n)}\sqrt{(i-i')^2 + (j-j')^2} + \delta_{ij}}$$

• Interlocking iterative procedures:

$$\Psi^{(N),p,q} \stackrel{\mathsf{PM}}{\longrightarrow} \Psi^{(N),p} \stackrel{\mathsf{PC}}{\longrightarrow} \Psi^{(N)}$$

for $\Psi^{(N),p,q} := (E^{(N),p,q}, \Phi^{(N),p,q})$ [Picard] (PC) $\Rightarrow p$: solutions of sequence of *linearized* problems

$$h^{(n)-2}\left[\frac{1}{2}A^{(N)} + v^{(N)} + g\,\tilde{W}^{(N)}[\Phi^{(N),p}]\right]\Phi^{(N),p+1} = E^{(N),p+1}\,\Phi^{(N),p+1}$$

[Power Method] (PM)⇒ Underlying linear problem ([Lanczos]: Krylov subspace method [Lanczos 50],[Cullum,Willoughby 85])

PM: Linear real symmetric operator H on a complex finite N-dimensional Hilbert space $\mathcal{H}, \ \psi^0 = \sum_{k=0}^{N-1} c_k \phi_k$:

$$\psi^{j} := \frac{H^{j}\psi^{0}}{\|H^{j}\psi^{0}\|} = \sum_{k=0}^{N-1} \frac{c_{k}\left(\frac{E_{k}}{E_{*}}\right)^{j}}{\left(|c_{*}|^{2} + \sum_{l=0, l \neq *}^{N-1} |c_{l}|^{2} \left(\frac{E_{l}}{E_{*}}\right)^{2j}\right)^{1/2}} \phi_{k} \xrightarrow{j \to \infty} \frac{c_{*}}{|c_{*}|} \phi_{*}$$

with

$$|E_*| = \max\left\{ |E_k| \mid E_k \in \sigma\left(H|_{span\{\phi_k \mid c_k \neq 0\}}\right) \right\}$$

20

• Stopping criterion:

$$\left\|\frac{H_s\psi^j - \left(\psi^j, H_s\psi^j\right)\psi^j}{\left(\psi^j, (H_s - s\mathbb{I})\psi^j\right)}\right\| \le \epsilon_{rel}$$

- s: energy shift
- Convergence speed:

$$q_{\tilde{k}}(s) := \left(\frac{E_{\tilde{k}} + s}{E_* + s}\right)^j$$

 $\tilde{k} \in \{0, ..., N-1\}$: quotient closest to 1 Level spacing:

$$\Delta E = O(g^2)$$

 \Rightarrow Estimate on j !

• Simulation 1 Double well potential

• Parameters (for the figure): Number of grid points: $n = 2^m$ (here: m=6; confirmed for higher m) External potential: $v(x,y) = V_0/\cosh((x-x_0)^2/a^2 + (y-y_0)^2/b^2)$ $((x_1)_0, (y_1)_0) = (0.35, 0.5), ((x_2)_0, (y_2)_0) = (0.65, 0.5)$ $(a_1, b_1) = (a_2, b_2) = (0.03, 0.03), (V_1)_0 = (V_2)_0 = -0.1$ Two-body potential: $\alpha = 0$ and $\delta = 0.1$ Coupling constant: g = -16Tolerance: $\epsilon_{rel} = 0.000001$

- Iteration: $q = \infty$: $q = O(10) O(10^2)$, $p = \infty$: p = O(10)
- Starting guesses:

$$\Phi^{(N),p+1,0} := \Phi^{(N),p,\infty}$$

Time Dependent Hartree Equation

1. Weak coupling limit of bosonic system and Newtonian limit of Hartree equation

• Large system of weakly interacting nonrelativistic bosons [Hepp 74], [Ginibre,Velo 79,80]

State space: $\mathcal{H}^{(N)} := \frac{1}{N!} \sum_{\pi \in \sigma(N)} U_{\pi} L^2(\mathbb{R}^{3N})$ (Pauli principle) Hamiltonian:

$$H^{(N)} := \sum_{j=1}^{N} \left[-\frac{1}{2} \Delta_j + v(x_j) \right] - \kappa \sum_{1 \le i < j \le N} V(x_i - x_j)$$

with $\kappa > 0$.

Example: $V(x) \simeq |x|^{-6} + \alpha |x|^{-1}$, $\alpha \ll 1$, $|x| \gg$ diameter of atom

Second quantization formalism: Fock space over state space: $\mathcal{F}_b := \bigoplus_{N=0}^{\infty} \mathcal{H}^{(N)}, \ \mathcal{H}^{(0)} := \mathbb{C}$ Annihilatiors: $(a(f)\Psi)^{(N)}(x_1,...,x_N) \propto \int dx \ \overline{f}(x) \Psi^{(N+1)}(x,x_1,...,x_N)$ CCR: $[a(f),a(g)] = [a^{\dagger}(f),a^{\dagger}(g)] = 0, \ [a(f),a^{\dagger}(g)] = (f,g)$

Theorem

$$\lim_{\kappa \to 0} \langle \theta_{\kappa}, \prod_{j=1}^{m} A_{\kappa}^{*}(f_{j}, t_{j}) A_{\kappa}(g_{j}, s_{j}) \theta_{\kappa} \rangle = \prod_{j=1}^{m} \bar{\psi}(f_{j}, t_{j}) \psi(g_{j}, s_{j})$$

with $\theta_{\kappa} := c_{\kappa} (a^{\dagger}(\psi_0))^{[\kappa^{-1}]} \phi$, $\psi(f,t) := \int dx \, \overline{f}(x) \, \psi(x,t)$, and $\psi(x,t)$ is solution of

$$i\partial_t \psi = \left[-\frac{1}{2} \Delta + v - V * |\psi|^2 \right] \psi$$

with $\psi(x,0) = \psi_0$!

• Newtonian Limit [Fröhlich, Tsai, Yau 00]

Hamiltonian nature of Hartree equation: phase space $W^{1,2}(\mathbb{R}^3)$, symplectic 2-form $\omega = \frac{i}{2}d\psi \wedge d\overline{\psi}$ Gauge invariance and Galilei symmetries !

Hartree equation as Hamilton's equation of motion from Hartree functional or Euler-Lagrange equation from action

$$\mathcal{S}[\bar{\psi},\psi] = \int_{t_1}^{t_2} dt \left[\frac{i}{2} \int_{\mathbb{R}^d} d^d x \ \bar{\psi}_t \dot{\psi}_t - \mathcal{H}[\bar{\psi}_t,\psi_t] \right]$$

Action on perturbed superposition of minimizers Φ_{N_i}

$$\psi_t(x) = \sum_{j=1}^k \Phi_{N_j(t)}(x - r_j(t))e^{i\theta_j(x,t)} + h_t^{\varepsilon}(x)$$

 \Rightarrow On time scale $O(\varepsilon^{-1})$:

$$\mathcal{S}[\bar{\psi},\psi] = \frac{1}{2}\mathcal{S}_{Nwt} + \frac{1}{2}\int_{t_1}^{t_2} dt \sum_{j=1}^k \left[\frac{i}{2}\dot{N}_j - N_j\dot{\vartheta}_j - 2\mathcal{H}[\Phi_{N_j(t)},\Phi_{N_j(t)}] + R^{\varepsilon}\right]$$

$$\mathcal{S}_{Nwt} = \int_{t_1}^{t_2} dt \sum_{j=1}^k \left[\frac{N_j}{2}\dot{r}_j^2 - N_jw^{\varepsilon}(r_j) + \frac{1}{2}\sum_{i=1,i\neq j}^k N_iN_jV^{long}(\varepsilon(r_i - r_j))\right]$$

 S_{Nwt} : k point particles, masses $N_1, ..., N_k$, external potential $v = w^{\varepsilon}$, two-body interaction $N_i N_j V^{long}(\varepsilon(r_i - r_j))$ $R^{\varepsilon} = o(\varepsilon)$: remainder Variations w.r.t. r_j \Rightarrow Newton's equation of motion !

$$\ddot{r_j} = -\varepsilon \nabla w(\varepsilon r_j) + \varepsilon \frac{1}{2} \sum_{i=1, i \neq j}^k N_i \nabla V^{long}(\varepsilon (r_i - r_j)) + a_j$$

 $|a_j(t)| = o(\varepsilon)$: from R^{ε}

Variations w.r.t. ϑ_j \Rightarrow Approximate conservation N_j : $\dot{N}_j = o(\varepsilon)$

```
\Rightarrow Point particle limit for \varepsilon \downarrow 0 !
```

I.e.:

Motion of extended particle in shallow external potential interacting weakly with dispersive medium, exchanging mass and energy !

• Applications in physics:

Dynamics of **BEC**

Structure formation in universe from cold dark matter dynamics Measurement process in quantum mechanics

2. Analysis of numerical scheme

Hartree initial-boundary value problem:

$$\begin{aligned} i\partial_t \psi_t &= \left(-\frac{1}{2} \Delta + v + g \, V *_{\Omega_c} |\psi_t|^2 \right) \psi_t, \ t > 0 \\ \psi_t|_{\partial\Omega_c} &= 0, \ t \ge 0, \\ \psi_0 &= \psi_{in} \end{aligned}$$

• Space (FE) and time discretization [IFD]:

$$\begin{split} i\frac{1}{t^{(s)}} \left(\phi^{(N)}, \psi_{k+1}^{(N)} - \psi_{k}^{(N)}\right)_{2} &= \frac{1}{2} \left(\nabla \phi^{(N)}, \nabla \psi_{\tilde{k}}^{(N)}\right)_{2} + \left(\phi^{(N)}, v\psi_{\tilde{k}}^{(N)}\right)_{2} \\ &+ g \left(\phi^{(N)}, F_{ic, \psi_{k}^{(N)}}\left[\psi_{\tilde{k}}^{(N)}\right]\right)_{2} \\ \psi_{0}^{(N)} &= \psi_{in}^{(N)} \\ \text{where } F_{ic, \phi}[\psi] &:= \frac{1}{2} (W[2\psi - \phi] + W[\phi])\psi, \ W[\varphi] := V * |\varphi|^{2} \end{split}$$

• Theorems Existence, uniqueness, and accuracy

Theorem 4 (Accuracy) Let $V \in W^{2,1}(\mathbb{R}^2)$, $v \in W^{2,2}(\Omega_s)$, and

$$\left\|\psi_{in} - \psi_{in}^{(N)}\right\|_{2} \le c_{in} h^{(n)^{2}}$$

for some $c_{in} \in \mathbb{R}^+$.

for

Then, the L^2 -error of the discretization is controlled by

$$\max_{k \in \{0,...,s-1\}} \left\| \psi_k - \psi_k^{(N)} \right\|_2 \le c_{ic} \left(t^{(s)^2} + h^{(n)^2} \right)$$

some $c_{ic} = c_{ic} (\|\psi\|_{m,2}), \ m = 0, 1, 2, 4, 6.$

• Sketch for Proof of Theorem 4

Step 1: Replacement

Locally Lipschitz problem \mapsto globally Lipschitz problem:

$$\tilde{F}_{ic}[\psi_{1},\psi_{2}] := \frac{1}{2} (W[\psi_{1}] + W[\psi_{2}]) \frac{1}{2} (\psi_{1} + \psi_{2})
T_{ic}^{\delta} := \left\{ \varphi \in L^{2}(\Omega) \, | \, \exists t \in \bar{\tau} : \, \|\psi_{t} - \varphi\|_{2} \le \delta \right\}^{\times 2}
\tilde{F}_{i}^{\delta}|_{T_{i}^{\delta}} := \tilde{F}_{i}|_{T_{i}^{\delta}}
\tilde{F}_{i}^{\delta}|_{T_{i}^{\delta}} := \tilde{F}_{i}|_{T_{i}^{\delta}}$$

 $\|\tilde{F}_{ic}^{\delta}[\psi_{1},\phi_{1}] - \tilde{F}_{ic}^{\delta}[\psi_{2},\phi_{2}]\|_{2} \leq L_{ic}(\|\psi_{1}-\psi_{2}\|_{2} + \|\phi_{1}-\phi_{2}\|_{2})$

Step 2: Accuracy for globally Lipschitz problem

Step 3: Approximation

Globally Lipschitz solution within world tube for sufficiently small $t^{(s)}, h^{(n)}$

• a priori estimate on $c_{ic} = c_{ic}(\|\psi\|_{m,2}), m = 0, 1, 2, 4, 6$? Theorem (Regularity of Global Solution): $\psi \in C([0, \infty[, W^{2,2}(\Omega)) \cap C^1([0, \infty[, L^2(\Omega)), \Omega \subset \mathbb{R}^2$ But: polynomial decay in time of higher Sobolev norms [Bourgain 95], [Staffilani 97]

3. Numerical approach to long-time behavior

[Aschbacher, Fröhlich, Interlandi, Troyer 01]

• Simulation 2 Damped oscillation into potentials minimum Loss of mass and energy from particle into dispersive waves: dissipation through radiation

 $\Rightarrow t \rightarrow \infty$: trajectory expected to approach minimum of external potential !

Return to equilibrium

SumRT norm for different imaginary parts

t=55

t=52

t=58

Absorbing boundaries

Outlook

- Coherent picture of measurement process Ingredients: proof relaxation to ground state, scattering theory,...
- Simulations: Mirror charge model, Young double slit,...
- Higher regularity of global solutions in more general cases
 ⇒ a priori estimates on accuracy

Summary

Physics: Interpretations (BEC, bosonic CDM, measurement process,...)

Analysis: Results on continuous and discretized Hartree equation (Uniqueness and non-uniqueness of Hartree minimizers, accuracy of approximation schemes, regularity of global solutions, ...)

Numerics: High performance *implementation* of Hartree eigenvalue problem and Hartree dynamics in external potentials (Soliton dissipation through emission of radiation, binary collapse, measurement process,...).