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Time In-Dependent Hartree Equation

1. Motivation from physics: Bose-Einstein condensation (BEC) in

trapped gases

• Series of seminal experiments 1995 on rubidium Rb87, sodium Na23,

lithium Li7: sharp peak in velocity distribution !

[Anderson et al. 95],[Davis et al. 95],[Bradley et al. 95]

• Rigorous description of BEC for very dilute gases based on analysis

of weak coupling limit of large bosonic systems

[Hepp 74], [Lieb,Seiringer,Yngvason 99], [Fröhlich,Tsai,Yau 00]

⇒ Hartree theory !
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BEC

Images of the velocity distribution by Anderson et al. (1995), taken by meansof the expansion method. The left frame corresponds to a gas at a temperaturejust above condensation; the center frame, just after the appearance of the con-densate; the right frame, after further evaporation leaves a sample of nearly purecondensate. The �eld of view is 200�m�270�m, and corresponds to the distancethe atoms have moved in about 1=20s. The color corresponds to the number ofatoms at each velocity, with red being the fewest and white being the most.
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• Condensate wave function ψ is solution of Hartree eigenvalue prob-
lem (

−
~2

2m
∆ + v + γV ∗ |ψ|2

)
ψ = εψ

‖ψ‖22 = N

m: mass of boson
v: external potential: the trap
γ: Hartree coupling
V : two-body potential of boson-boson interaction
N : number of bosons in the system

• BEC-scenario: mean interboson distance d � range of V , V repul-
sive ⇒ V = δ: [Gross-Pitaevskii] (GP)
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• Regime of very dilute and cold gas:
[Low energy scattering theory]⇒ details of V irrelevant, boson-boson in-
teraction characterized by scattering length a alone:

γ ∝ a

• Rescaling to dimensionless variables:
energy unit: ground state energy ~ωv of linear operator − ~2

2m∆ + v
length unit: ∆v := ( ~

mωv
)1/2

(
−

1

2
∆ + v + g|ψ|2

)
ψ = Eψ

‖ψ‖22 = 1

with

g ∝ N
a

∆v
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• Mainly interested in attractive interatomic forces:

Li7 has a = −1.45 · 10−9m !

[Abraham et al. 95]

• Bosons with attractive interactions may collapse into clusters of

very high density:

Propose reintroduction of less coarse-grained resolution of boson-

boson interaction:(
−

1

2
∆ + v + gV ∗ |ψ|2

)
ψ = Eψ

‖ψ‖22 = 1

where V is of positive type and g < 0

(short range attractive)
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• Experiment: Li7-gas undergoes collective collapse, if N > Nc

• Minimizer ΦGP of GP functional (p=3)

HGPg [ψ̄, ψ] :=
1

2
‖∇ψ‖22 + g‖ψ‖p+1

p+1

For g < 0:

HGPg [ψ̄λ, ψλ] = λ2 ‖∇ψ‖22 + gλd/2(p−1) ‖ψ‖p+1
p+1

for ψλ(x) := λd/2ψ(λx), x ∈ Rd, λ ∈ R+:

p < 1 +
4

d

⇒ for p = 3, d ≥ 2: bottom drops out !
⇒ GP theory breaks down at the collapse point of the condensate if
g < 0 !
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• Unlike GP, minimizers Φ of Hartree functional

Hg[ψ̄, ψ] :=
1

2
‖∇ψ‖22 + (ψ, vψ)2 +

1

2
g(ψ, V ∗ |ψ|2ψ)2

exist for g < 0 if gc < |g| for some positive gc, even for v = 0 !

Length scale ∆H set by Hartree minimizer Φ in trap v of same order

as ∆v

∆H ≈∆v, for |g| < gc, g < 0

whereas Φ still exists, and

∆H �∆v, for gc < |g|, g < 0

and ∆H independent of trap v.
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• neglect:
- Inelastic collisions and recombination close to collapse, as well as
interactions of electrons and nuclei with em field
- Short range repulsive interactions between bosons
⇒ two-body forces purely attractive
⇒ system not thermodynamically stable (g < 0 fixed, ground state
energy scales like −O(N2) as N →∞)

• In mean-field regime, N → ∞ and κN constant, a dilute gas of
bosons well discribed by Hartree theory !
[Hepp 74],[Fröhlich,Tsai,Yau 00]

• Hartree theory meaningful at collpase point and beyond
⇒ serves to describe qualitatively features of system close to collapse!
None of these processes can be described by GP !
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2. Symmetry breaking regime at finite coupling

• Symmetry properties minimizer Φ of Hartree functional for large
negative coupling g,

Hg[ψ̄, ψ] =
1

2
‖∇ψ‖22 + (ψ, vψ)2 +

1

2
g(ψ, V ∗ |ψ|2ψ)2

• Existence of gc: variational methods
[Lieb 77]

• Size of gc: [Birman-Schwinger]⇒ gc > 0 for V short range, d ≥ 3

E.g. [Cwikel-Lieb-Rozenblujm bound]
Let d ≥ 3 and let N(W ) denote the number of bound states of −∆ +W on L2(Rd).
Then, there exists a constant cd ∈ R+ such that

N(W ) ≤ cd
∫

Rd

ddx |W−(x)|d/2.

gc = 0 for V long range, d ≥ 3, and for d = 1,2 !
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• Non-uniqueness of Hartree minimizer Φ for sufficiently large coupling
[Aschbacher,Fröhlich,Graf,Schnee,Troyer 00]

Theorem 1 (Symmetry breaking)

Let V = |x|−1 in Rd, d ≥ 2, v ∈ Cb(Rd).
If, for some G in the group of Euclidian motions E(d), any v-minimizing
sequence xk∈Rd

lim
k→∞

v(xk) = inf
x∈Rd

v(x) fulfills lim inf
k→∞

|Gxk − xk| > 0 (S),

then, for sufficiently large N , any minimizer Φ of the Hartree func-
tional satisfies

|Φ ◦G|2 6= |Φ|2.

In particular: If v has symmetry G ∈ E(d)
⇒minimizer breaks symmetry of v for sufficiently large coupling !
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• Examples:

(1) Potential well at origin

(2) Potential well not at origin

(3) Mexican hat at origin

(4) Double well symmetric w.r.t origin

• Propose experiments for symmetry breaking with magnetic traps !

Remark

Theorem 1 also holds true for V ∈ L1(Rd)∩L∞(Rd) is of positive type
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• Sketch for Proof of Theorem 1

“Free” functional:

Eg[ψ̄, ψ] :=
1

2
‖∇ψ‖22 +

1

2
g(ψ, V ∗ |ψ|2ψ)2

E[N, g] := inf {Eg[ψ̄, ψ] |ψ∈W1,2(Rd), ‖ψ‖22 =N}

Step 1: Concentration

Given δ > 0, there is η > 0 such that, for N large enough, any wave

function ψ with ‖ψ‖22 = N, E−1[ψ̄, ψ] ≤ (1− η)E[N,−1] (η-approximate

minimizer) fulfills, for some y ∈ Rd,∫
B(y,δ)

ddx |ψ(x)|2 ≥ (1− δ)N.
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Step 2: Localization
Let v ∈ Cb(Rd) and ε, δ > 0 be fixed.
Then, for N large enough, any minimizer Φ of

H−1[ψ̄, ψ] = E−1[ψ̄, ψ] + (ψ, vψ)2

‖ψ‖22 = N

satisfies

(i)
∫

B(y,δ)

ddx |Φ(x)|2 ≥ (1− δ)N

(ii) inf
x∈B(y,δ)

v(x) ≤ inf
x∈Rd

v(x) + ε

Step 3: Theorem 1
Reductio ad absurdum
�
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• Uniqueness of the Hartree minimizer Φ for sufficiently small coupling

[Aschbacher,Fröhlich,Graf,Schnee,Troyer 00]

Theorem 2 (Positive critical coupling in d ≥ 1)

Let V ∈ L1(Rd) ∩ L∞(Rd) be real-valued, v ∈ Cb(Rd), d ∈ N, such that

H0 := −
1

2
∆ + v

has an isolated ground state.

Then, for sufficiently small coupling |g|, there exists a unique nonlinear

ground state ψ, ‖ψ‖2 = 1, of

H
(ψ)
g := H0 + gV ∗|ψ|2. (1)

This implies that, in any dimension d ≥ 1, symmetry breaking occurs

above a strictly positive critical coupling g∗ only, |g| > g∗.
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• Sketch for Proof of Theorem 2

Step 1: Linear part and analytic perturbation theory

[Weyl]⇒ σess(H0) = [0,∞[

By assumption: E0 := inf σ (H0) ∈ σp(H0) isolated in σ(H0)

⇒ E0 ∈ σd(H0), i.e. dim RanPH0(E0)<∞
e−tH0 positivity improving for all t > 0

[Perron-Frobenius]⇒ E0 is nondegenerate with strictly positive eigen-

function ψ0

For |g| sufficiently small: H(ψ)
g is analytic family in the sense of Kato

[Kato-Rellich]⇒ ∃! isolated nondegenerate eigenvalue E(ψ)
g of H(ψ)

g near

E0 and E
(ψ)
g is analytic in g
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Step 2: Nonlinear part and contraction mapping principle

S := {ψ ∈ L2(Rd) | ‖ψ‖2 = 1}
Pg : S → S

ψ 7→ Pg[ψ] :=
1

c
(ψ)
g

1

2πi

∮
Cε
dz [H(ψ)

g − z]−1ψ0

with Cε := {z ∈ C | |E0 − z| = ε} and normalization c
(ψ)
g

[Banach]⇒ Fixed point of Pg: unique nonlinear ground state !

�
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3. Numerical approach to symmetry breaking

HARTREE-package:

• Numerics: dyadic mesh, bilinear Finite Elements

• Implementation: BLITZ++

[Veldhuizen 98]

Hartree eigenvalue problem:

h(n)−2
[
1

2
A(N) + v(N) + gW (N)[ψ(N)]

]
ψ(N) = E(N)ψ(N)

• MFFT Mixed Radix Fast Fourier Transform

[Petersen 84]
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Fast evaluation of Hartree energy:
O(N log(N)) (MFFT), O(N) (Multigrid) in nonconforming approxi-
mation:

W̃ (N)
[
ψ(N)

]
(i,j),(k,l)

= δikδjl h
(n)4

n−1∑
i′,j′=0

∣∣∣ψ(N)
i′j′

∣∣∣2 e−αh
(n)
√

(i−i′)2+(j−j′)2

h(n)
√

(i− i′)2 + (j − j′)2 + δ

• Interlocking iterative procedures:

Ψ(N),p,q
PM
q→∞−→ Ψ(N),p

PC
p→∞−→ Ψ(N)

for Ψ(N),p,q := (E(N),p,q,Φ(N),p,q)
[Picard] (PC)⇒ p: solutions of sequence of linearized problems

h(n)−2
[
1

2
A(N)+v(N)+g W̃ (N)[Φ(N),p]

]
Φ(N),p+1 = E(N),p+1 Φ(N),p+1
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[Power Method] (PM)⇒ Underlying linear problem

([Lanczos]: Krylov subspace method

[Lanczos 50],[Cullum,Willoughby 85])

PM: Linear real symmetric operator H on a complex finite N-dimensional

Hilbert space H, ψ0 =
∑N−1
k=0 ckφk:

ψj :=
Hjψ0

‖Hjψ0‖
=

N−1∑
k=0

ck
(
Ek
E∗

)j
(
|c∗|2 +

∑N−1
l=0,l 6=∗ |cl|2

(
El
E∗

)2j
)1/2

φk
j→∞−→

c∗
|c∗|

φ∗

with

|E∗| = max
{
|Ek| |Ek ∈ σ

(
H|span{φk | ck 6=0}

)}
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• Stopping criterion:∥∥∥∥∥∥
Hsψj −

(
ψj, Hsψj

)
ψj(

ψj, (Hs − sI)ψj
)

∥∥∥∥∥∥ ≤ εrel
s: energy shift

• Convergence speed:

qk̃(s) :=

(
Ek̃ + s

E∗+ s

)j
k̃ ∈ {0, ..., N−1}: quotient closest to 1
Level spacing:

∆E = O(g2)

⇒ Estimate on j !
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• Simulation 1 Double well potential

• Parameters (for the figure):
Number of grid points: n = 2m (here: m=6; confirmed for higher m)
External potential: v(x, y) = V0/cosh((x− x0)2/a2 + (y − y0)2/b2)
((x1)0, (y1)0) = (0.35,0.5), ((x2)0, (y2)0) = (0.65,0.5)
(a1, b1) = (a2, b2) = (0.03,0.03), (V1)0 = (V2)0 = −0.1
Two-body potential: α = 0 and δ = 0.1
Coupling constant: g = −16
Tolerance: εrel = 0.000001

• Iteration: q =∞: q = O(10)−O(102), p =∞: p = O(10)

• Starting guesses:

Φ(N),p+1,0 := Φ(N),p,∞
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Time Dependent Hartree Equation

1. Weak coupling limit of bosonic system and Newtonian limit of
Hartree equation

• Large system of weakly interacting nonrelativistic bosons
[Hepp 74], [Ginibre,Velo 79,80]

State space: H(N) := 1
N !
∑
π∈σ(N)Uπ L

2(R3N) (Pauli principle)
Hamiltonian:

H(N) :=
N∑
j=1

[
−

1

2
∆j + v(xj)

]
− κ

∑
1≤i<j≤N

V (xi − xj)

with κ > 0.
Example: V (x) ' |x|−6 + α|x|−1, α� 1, |x| � diameter of atom
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Second quantization formalism:

Fock space over state space: Fb :=
⊕∞
N=0H

(N), H(0) := C
Annihilatiors: (a(f)Ψ)(N)(x1, ..., xN) ∝

∫
dx f̄(x) Ψ(N+1)(x, x1, ..., xN)

CCR: [a(f), a(g)] = [a†(f), a†(g)] = 0, [a(f), a†(g)] = (f, g)

Theorem

lim
κ→0
〈θκ,

m∏
j=1

A∗κ(fj, tj)Aκ(gj, sj)θκ〉 =
m∏
j=1

ψ̄(fj, tj)ψ(gj, sj)

with θκ := cκ (a†(ψ0))[κ−1]φ, ψ(f, t) :=
∫
dx f̄(x)ψ(x, t), and ψ(x, t) is

solution of

i∂tψ =
[
−

1

2
∆ + v − V ∗ |ψ|2

]
ψ

with ψ(x,0) = ψ0 !

26



• Newtonian Limit

[Fröhlich,Tsai,Yau 00]

Hamiltonian nature of Hartree equation: phase space W1,2(R3), sym-

plectic 2-form ω = i
2dψ ∧ dψ̄

Gauge invariance and Galilei symmetries !

Hartree equation as Hamilton’s equation of motion from Hartree func-

tional or Euler-Lagrange equation from action

S[ψ̄, ψ] =
∫ t2
t1
dt

[
i

2

∫
Rd
ddx ψ̄tψ̇t −H[ψ̄t, ψt]

]
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Action on perturbed superposition of minimizers ΦNj

ψt(x) =
k∑

j=1

ΦNj(t)
(x− rj(t))eiθj(x,t) + hεt(x)

⇒ On time scale O(ε−1):

S[ψ̄, ψ] =
1

2
SNwt +

1

2

∫ t2
t1
dt

k∑
j=1

[
i

2
Ṅj −Njϑ̇j − 2H[ΦNj(t)

,ΦNj(t)
] +Rε

]

SNwt =
∫ t2
t1
dt

k∑
j=1

Nj
2
ṙ2
j −Njw

ε(rj) +
1

2

k∑
i=1,i 6=j

NiNjV
long(ε(ri − rj))


SNwt: k point particles, masses N1, ..., Nk, external potential v = wε,
two-body interaction NiNjV

long(ε(ri − rj))
Rε = o(ε): remainder
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Variations w.r.t. rj
⇒ Newton’s equation of motion !

r̈j = −ε∇w(εrj) + ε
1

2

k∑
i=1,i 6=j

Ni∇V long(ε(ri − rj)) + aj

|aj(t)| = o(ε): from Rε

Variations w.r.t. ϑj
⇒ Approximate conservation Nj: Ṅj = o(ε)

⇒ Point particle limit for ε ↓ 0 !

I.e.:
Motion of extended particle in shallow external potential interacting
weakly with dispersive medium, exchanging mass and energy !
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• Applications in physics:

Dynamics of BEC

Structure formation in universe from cold dark matter dynamics

Measurement process in quantum mechanics
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2. Analysis of numerical scheme

Hartree initial-boundary value problem:

i∂tψt =
(
−

1

2
∆ + v + g V ∗Ωc |ψt|

2
)
ψt, t > 0

ψt|∂Ωc = 0, t ≥ 0,

ψ0 = ψin

• Space (FE) and time discretization [IFD]:

i
1

t(s)

(
φ(N), ψ(N)

k+1−ψ
(N)
k

)
2

=
1

2

(
∇φ(N),∇ψ(N)

k̃

)
2

+
(
φ(N), vψ(N)

k̃

)
2

+g

(
φ(N), F

ic,ψ
(N)
k

[
ψ(N)
k̃

])
2

ψ(N)
0 = ψ(N)

in

where Fic,φ[ψ] := 1
2(W [2ψ−φ] +W [φ])ψ, W [ϕ] := V ∗ |ϕ|2
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• Theorems Existence, uniqueness, and accuracy

Theorem 4 (Accuracy)

Let V ∈W2,1(R2), v ∈W2,2(Ωs), and∥∥∥ψin−ψ(N)
in

∥∥∥
2
≤ cin h(n)2

for some cin ∈ R+.

Then, the L2-error of the discretization is controlled by

max
k∈{0,...,s−1}

∥∥∥ψk−ψ(N)
k

∥∥∥
2
≤ cic

(
t(s)

2
+ h(n)2

)
for some cic = cic(‖ψ‖m,2), m = 0,1,2,4,6.
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• Sketch for Proof of Theorem 4

Step 1: Replacement

Locally Lipschitz problem 7→ globally Lipschitz problem:

F̃ic[ψ1, ψ2] :=
1

2
(W [ψ1] +W [ψ2])

1

2
(ψ1 + ψ2)

T δic :=
{
ϕ ∈ L2(Ω) | ∃t ∈ τ̄ : ‖ψt − ϕ‖2 ≤ δ

}×2

F̃ δi |T δi
:= F̃i|T δi

‖F̃ δic[ψ1, φ1]−F̃ δic[ψ2, φ2]‖2 ≤ Lic(‖ψ1−ψ2‖2 + ‖φ1−φ2‖2)

Step 2: Accuracy for globally Lipschitz problem

Step 3: Approximation

Globally Lipschitz solution within world tube for sufficiently small

t(s), h(n)

�
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• a priori estimate on cic = cic(‖ψ‖m,2), m = 0,1,2,4,6 ?

Theorem (Regularity of Global Solution ):

ψ ∈ C([0,∞[,W2,2(Ω)) ∩ C1([0,∞[, L2(Ω)), Ω ⊂ R2

But: polynomial decay in time of higher Sobolev norms

[Bourgain 95], [Staffilani 97]

34



3. Numerical approach to long-time behavior

[Aschbacher,Fröhlich,Interlandi,Troyer 01]

• Simulation 2 Damped oscillation into potentials minimum

Loss of mass and energy from particle into dispersive waves: dissipa-

tion through radiation

⇒ t→∞: trajectory expected to approach minimum of external po-

tential !
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0 500
Simulation steps
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0.9955

0.996

0.9965

0.997

0.9975

0.998

S
um

R
T

 n
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m

SumRT norm for different imaginary parts

Imaginary part = 0
Imaginary part = −500
Imaginary part = −1000
Imaginary part = −2000
Imaginary part = −4000
Imaginary part = −6000
Imaginary part = −8000
Imaginary part = −10000
Imaginary part = −20000
Imaginary part = −50000

Parameters:
ep = 2
nl = 30
nsteps = 128
dt = 1.25e−5
a = 1e6
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Absorbing boundaries
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Outlook

• Coherent picture of measurement process

Ingredients: proof relaxation to ground state, scattering theory,...

• Simulations: Mirror charge model, Young double slit,...

• Higher regularity of global solutions in more general cases

⇒ a priori estimates on accuracy
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Summary

Physics: Interpretations

(BEC, bosonic CDM, measurement process,...)

Analysis: Results on continuous and discretized Hartree equation

(Uniqueness and non-uniqueness of Hartree minimizers, accuracy of

approximation schemes, regularity of global solutions, ...)

Numerics: High performance implementation of Hartree eigenvalue

problem and Hartree dynamics in external potentials

(Soliton dissipation through emission of radiation, binary collapse,

measurement process,...).
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