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Time In-Dependent Hartree Equation

1. Motivation from physics: Bose-Einstein condensation (BEC) in
trapped gases

e Series of seminal experiments 1995 on rubidium Rbg7, sodium Na»ssz,
lithium Liz: sharp peak in velocity distribution !
[Anderson et al. 95],[Davis et al. 95],[Bradley et al. 95]

e Rigorous description of BEC for very dilute gases based on analysis
of weak coupling limit of large bosonic systems

[Hepp 74], [Lieb,Seiringer,Yngvason 99], [Frohlich, Tsai,Yau 00]
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BEC

Images of the velocity distribution by Anderson et al. (1995), taken by means
of the expansion method. The left frame corresponds to a gas at a temperature
just above condensation; the center frame, just after the appearance of the con-
densate; the right frame, after further evaporation leaves a sample of nearly pure
condensate. The field of view is 200um x 270um, and corresponds to the distance
the atoms have moved in about 1/20s. The color corresponds to the number of
atoms at each velocity, with red being the fewest and white being the most.



e Condensate wave function i is solution of Hartree eigenvalue prob-
lem

h2
(——A+U+W*|w|2>w = et

2m
2
][5 = N

m:. mass of boson

v: external potential: the trap

~: Hartree coupling

V. two-body potential of boson-boson interaction
N: number of bosons in the system

e BEC-scenario: mean interboson distance d > range of V, V repul-
sive = V = 4.



e Regime of very dilute and cold gas:
= details of V irrelevant, boson-boson in-
teraction characterized by scattering length a alone:

Y X a

e Rescaling to dimensionless variables:

energy unit: ground state energy hw, Of linear operator ——A + v
length unit; A, = (,nf‘)v)l/2
(—Sa+otaul)e = By
2
¥l = 1

with

ocN—
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e Mainly interested in attractive interatomic forces:
Liz has a = —1.45-10"9m |
[Abraham et al. 95]

e Bosons with attractive interactions may collapse into clusters of
very high density:
Propose reintroduction of less coarse-grained resolution of boson-
boson interaction:
1
(~5a+v+gvelpP)y = By

2
lllz = 1

where V is of positive type and ¢ < O
(short range attractive)



e EXperiment: Liy-gas undergoes collective collapse, if N > N¢
e Minimizer ®&F of GP functional (p=3)

— 1
HG WD, y] = SIVel3 + gllvlly 1
For g < O:
HGP [0y, 03] = A2 | V9|13 + gAd/ 2P~ D) |y Pt ]
for ¥y (z) := A¥2¢p(A\z), z € RY, X € RT:

<14
P d

= for p =3, d > 2: bottom drops out !
= GP theory breaks down at the collapse point of the condensate if

g<O0!



e Unlike GP, minimizers ® of Hartree functional

— 1 1
Hold, ¥] 1= Z|IVel5 + (v, v9)2 + Sg(0, V x [9]%0)2

exist for g < 0 if g- < |g| for some positive g., even for v =0 |
Length scale Ay set by Hartree minimizer & in trap v of same order
as Ay

Ag~ADy, for |lgl<ge, ¢g<O
whereas & still exists, and

Ay <Dy, for ge<lgl, g<O0O

and Ay independent of trap wv.



e neglect:

- Inelastic collisions and recombination close to collapse, as well as
interactions of electrons and nuclei with em field

- Short range repulsive interactions between bosons

= two-body forces purely attractive

= system not thermodynamically stable (g < O fixed, ground state
energy scales like —O(N?2) as N — o)

e In mean-field regime, N — oo and kN constant, a dilute gas of
bosons well discribed by Hartree theory !
[Hepp 74],[Frohlich, Tsai,Yau 00]

e Hartree theory meaningful at collpase point and beyond
= serves to describe qualitatively features of system close to collapse!
None of these processes can be described by GP !



2. Symmetry breaking regime at finite coupling

e Symmetry properties minimizer ® of Hartree functional for large
negative coupling g,

- 1 1
Hgld, ¥ = ZIIVII5 + (4, vw)2 + Sg(w, V * [$24)2

e EXistence of g.: variational methods
[Lieb 77]

e Size of g¢: = ge > 0 for V short range, d > 3

E.g.
Let d > 3 and let N(W) denote the number of bound states of —A + W on L?(RY).
Then, there exists a constant ¢; € RT such that

N(W) < ¢y / dlx |W_(z)|%2.
Rd

ge = 0 for V long range, d > 3, and ford =1,2 !
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e Non-uniqueness of Hartree minimizer & for sufficiently large coupling
[Aschbacher,Frohlich,Graf,Schnee, Troyer 00]

Theorem 1 (Symmetry breaking)
Let V =z|7 ! in RY, d> 2, veCy(RY).
If, for some G in the group of Euclidian motions E(d), any v-minimizing
sequence xj, € R4
lim v(xzg) = inf v(x) fulfills liminf |Gz — x| > 0 (5),
k—o00 rcRd k— 00
then, for sufficiently large N, any minimizer & of the Hartree func-
tional satisfies

P o G| # [

In particular: If v has symmetry G € E(d)
=minimizer breaks symmetry of v for sufficiently large coupling !
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e Examples:

(1) Potential well at origin

(2) Potential well not at origin

(3) Mexican hat at origin

(4) Double well symmetric w.r.t origin

e Propose experiments for symmetry breaking with magnetic traps !

Remark
Theorem 1 also holds true for V € LY (R4 N L>®(RY) is of positive type
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e Sketch for Proof of Theorem 1
“Free’” functional:

gg [%7 ¢]
E[N,g]

1 1
SIVI5 + Sa(, Vo 1242
inf {€g[d, ] [ € WH2RD), [9]3=N}

Step 1: Concentration

Given 0 > 0, there is n > 0 such that, for N large enough, any wave
function ¢ with |[¢||3 = N,E_1[¢,¢] < (1 —n)E[N,—1] (y-approximate
minimizer) fulfills, for some y € R¢,

d 2 B
Joe, 5y E @ > A=) N
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Step 2: Localization
Let v € Cp(R?) and ¢,5 > 0 be fixed.
Then, for N large enough, any minimizer & of

H_1[v, ] E_1[v, ] + (¥, v)o
¥z = N

satisfies

(i) | dble@R> @ -oN

B(y,6)

(i1) zcegl(gﬁ) v(z) < xienlgdv(:c) + €

Step 3: Theorem 1

Reductio ad absurdum
L]
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e Uniqueness of the Hartree minimizer & for sufficiently small coupling
[Aschbacher,Frohlich,Graf,Schnee, Troyer 00]

Theorem 2 (Positive critical coupling in d > 1)
Let V € L1(RY) N L°(R%) be real-valued, v € Cp(R%), d € N, such that

1
HO = —EA—I_’U

has an isolated ground state.
Then, for sufficiently small coupling |g|, there exists a unique nonlinear
ground state v, ||[¢]|, =1, of

HSY) := Ho + gV +|y|2. (1)

This implies that, in any dimension d > 1, symmetry breaking occurs
above a strictly positive critical coupling g« only, |g| > gx.
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e Sketch for Proof of Theorem 2

Step 1: Linear part and analytic perturbation theory
= 0ess(Hg) = [0, o0
By assumption: Eg :=inf o (Hp) € op(Hp) isolated in o(Hp)
= Eo € 04(Hp), i.e. dimRan PHo(Ep) < oo
e~ tHo positivity improving for all t > 0
= FEg is nondegenerate with strictly positive eigen-
function g
For |g| sufficiently small: Hg(w) is analytic family in the sense of Kato
= dl isolated nondegenerate eigenvalue EW) HW) near

Eq and Eéw is analytic in g
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Step 2: Nonlinear part and contraction mapping principle

S = {y € L2RY) | ||¢]l, = 1}
Pyg:S — S

. 1 1 W) -1
¢ Bl = . dz1H — 2w

with Cc := {2z € C||Eg — 2| = &} and normalization cgw)

= Fixed point of P, unique nonlinear ground state !

17



3. Numerical approach to symmetry breaking

HAR T REE-package:

e Numerics: dyadic mesh, bilinear Finite Elements
e Implementation: BLITZ+4++4

[Veldhuizen 98]

Hartree eigenvalue problem:

pm =2 [1 400 L0 4 ] ) = g 5,
2

e MFFT Mixed Radix Fast Fourier Transform
[Petersen 84]
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Fast evaluation of Hartree energy:
O(Nlog(N)) (MFFT), O(N) (Multigrid) in nonconforming approxi-
mation:

1 _ah(®) N2 N2
VT gy ey = OikOd1 2 |V — o
WA i!,§'=0 R\ (i — )2+ (G — )2 46

e Interlocking iterative procedures:
PM PC

wMpg T2 (Ve P2 (V)

for WV)pa - = (E(N),p,q, q;(N),p,q)
= p:. solutions of sequence of linearized problems

h(n)_2 lA(N)+U(N)_|_gW(N)[¢(N),p] dMN)p+1 — p(N)p+1 g (N)p+1
2
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= Underlying linear problem
( . Krylov subspace method
[Lanczos 50],[Cullum,Willoughby 85])

PM: Linear real symmetric operator H on a complex finite N-dimensional
Hilbert space H, %0 = Y13 cpéy:

. . E
= S B2\ 12 o
=0 (lexl? +zl_01#*|cz| (#)7)
with

[Ex| = max {|Ek| | Epco <H|Span{¢k;|ck#0}>}
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e Stopping criterion:
Hapd — (99, Hstpd ) 4
(w9, (Hs — sy

> €rel

s. energy shift

e Convergence speed:

By + s\’
qr.(s) 1= <Ek n z>

k € {0,..., N—1}: quotient closest to 1
Level spacing:

AE = 0(g°)

= Estimate on ;5 !
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e Simulation 1 Double well potential

e Parameters (for the figure):

Number of grid points: n = 2™ (here: m=6; confirmed for higher m)
External potential: v(z,y) = Vy/cosh((z — zg)?/a? + (y — yg)?/b2)
((z1)o, (y1)o) = (0.35,0.5), ((z2)o, (y2)0) = (0.65,0.5)

(a1,b1) = (ap,b2) = (0.03,0.03), (V1)o = (V2)og = —0.1

Two-body potential: «a =0 and 6 = 0.1

Coupling constant: g = —16

Tolerance: ¢,.,; = 0.000001

e Iteration: ¢ = co: ¢ = O(10) — O(102), p = o0: p = O(10)

e Starting guesses:
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Time Dependent Hartree Equation

1. Weak coupling limit of bosonic system and Newtonian |limit of
Hartree equation

e Large system of weakly interacting nonrelativistic bosons
[Hepp 74], [Ginibre,Velo 79,80]

State space: H(V) 1= 1, > reo(n) Ur L2(R3Y) (Pauli principle)
Hamiltonian:

() .

N

Z [——A + ’U(a:])] koY V(g — ;)
j=1 1<i<j<N

with x > 0.
Example: V(z) ~ |z|7% 4+ alz|™!, o < 1, |z| > diameter of atom

25

2



Second quantization formalism:

Fock space over state space: Fy := EB;’VO:O H(N), +H(0) .= C
Annihilatiors: (a(H)W) N (zq,...,zn) x [dz F(2) VWD (2 24, .., zn)
CCR: [a(f),a(g)] = [a'(f),aT(9)] = 0, [a(f),al(9)] = (f,9)

T heorem

3

lim (0, H Ap(f5,t)Ak(gj,55)0k) = H D(fj:t)¢(g), 55)

=1 =1

with 0. = e (at (o) o, w(f,t) = [dx f(z)w(x,t), and ¥(z,t) is

solution of
1
0 = [—§A Lo— Vs W] ¥

with ¢ (z,0) =
26



e Newtonian Limit
[Frohlich, Tsai,Yau 00]

Hamiltonian nature of Hartree equation: phase space W12(R3), sym-
plectic 2-form w = Ldi A dyp
Gauge invariance and Galilei symmetries !

Hartree equation as Hamilton’'s equation of motion from Hartree func-
tional or Euler-Lagrange equation from action

_ t ) _ . _
Sl = [ dt | [ d% P~ HBe v

1
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Action on perturbed superposition of minimizers CDNj

k .
pi(z) = ) Py )z — ri (1))@ 4 pg(x)
j=1

= On time scale O(¢~1):

_ 1 1 [t
S ¥] = SSnui+3 /tfdt

2

.

k .
1 . :
i [§Nj — Njj = 2HIPN, ) Py o) + Rsl
j:

t2 d Nj -2 € 1 ; long

SNwt /t dt > 75 N;w"(r;) + 5 > N;NV(e(r; —rj))
1 =1 i=1,i7%j

Snwi: k point particles, masses Nj, ..., Ni, external potential v = w*,

two-body interaction N;N,;V!"9(e(r; —r;))

Rf = o(e): remainder
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Variations w.r.t. T
= Newton’s equation of motion !

k
7y = —eVw(er;) +s% > NiVVIM(e(r; — 1)) + a

=117
la;(t)| = o(e): from R°

Variations w.r.t. 19]-
= Approximate conservation N;: N; = o(e)

= Point particle limit for ¢ | O !

I.e.:
Motion of extended particle in shallow external potential interacting

weakly with dispersive medium, exchanging mass and energy !
29



e Applications in physics:
Dynamics of BEC

Structure formation in universe from cold dark matter dynamics
Measurement process in qguantum mechanics

30



2. Analysis of numerical scheme

Hartree initial-boundary value problem:

1
e = (58 +v+gVrq, luil?) b, t>0
Yilo. = 0, t >0,
Yo = Yin
e Space (FE) and time discretization
N IR T ) N N (N) NY (V)
") (6™ o —vr"), = (W( V), + (690, o),
(V) (V)
+g <¢ , P ’w(N)[ ])2
w(N) — w(N)

where Fi. 4[] := 3(W[2¢—¢] + W[pDy, Wlg] :=V * ||?
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e [ heorems EXistence, uniqueness, and accuracy
Theorem 4 (Accuracy)

Let V € W2L(R2), v € W22(s), and

for some ¢;, € RT.
Then, the L2-error of the discretization is controlled by

bin— (N)HQ < ¢y B2

ocqmax [wn—i|, < eic (t<8>2 + h(”>2>

for some ¢;. = cic(||¢||m72), m=20,1,2,4,6.
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e Sketch for Proof of Theorem 4
Step 1: Replacement
Locally Lipschitz problem — globally Lipschitz problem:

- 1 1
Ficly1, 9] = E(W[¢1]+W[¢2])§(¢1+¢2)
) = {peL2()|3ter: p—wly <5}
Fi6|T§ = Fi|T§
|Fo b1, 1] —Eo 2, d2llla < Lic(l1 =2l + llé1—2ll5)

Step 2: Accuracy for globally Lipschitz problem
Step 3: Approximation
Globally Lipschitz solution within world tube for sufficiently small
t() p()
[]
33



e a priori estimate on ¢;c = ¢;e([|¥]l,,2), m=0,1,2,4,6 7
Theorem (Regularity of Global Solution ):

Y € C([0, oo, W22(2)) N CL([0, o[, L2(2)), 2 C R?

But: polynomial decay in time of higher Sobolev norms
[Bourgain 95], [Staffilani 97]
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3. Numerical approach to long-time behavior
[Aschbacher,Frohlich,Interlandi, Troyer 01]

e Simulation 2 Damped oscillation into potentials minimum

LLoss of mass and energy from particle into dispersive waves: dissipa-
tion through radiation

= t — oo trajectory expected to approach minimum of external po-
tential !
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Return to equilibrium

36



SUmRT norm

SumRT norm for different imaginary parts

0.998
0.9975
0.997
\ .~ Imaginary part =0
0.9965 - *"lrw—«l\[gag!nary part f -500
Parameters: Imaginary part = ~1000
ep=2 —— Imaginary part =-2000 -
0996 - | nl=30 Imaginary part = —4000 |
' nsteps = 128 Imaginary part = -6000
dt = 1.25e-5 Imaginary part = -8000
a= 1é6 — Imaginary part = =10000
0.9955 ¢ Imaginary part = —20000
— Imaginary part = -50000
0.995 \
0 500

Simulation steps
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Absorbing boundaries

38



Outlook

e Coherent picture of measurement process

Ingredients: proof relaxation to ground state, scattering theory,...

e Simulations: Mirror charge model, Young double slit,...

e Higher regularity of global solutions in more general cases
= a priori estimates on accuracy

39



Summary

Physics: Interpretations
(BEC, bosonic CDM, measurement process,...)

Analysis: Results on continuous and discretized Hartree equation
(Uniqueness and non-uniqueness of Hartree minimizers, accuracy of
approximation schemes, regularity of global solutions, ...)

Numerics: High performance implementation of Hartree eigenvalue
problem and Hartree dynamics in external potentials

(Soliton dissipation through emission of radiation, binary collapse,
measurement process,...).
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