A Veeeeery Short Introduction to the Mathematical Theory of Non-Equilibrium Quantum Statistical Mechanics

Walter H. Aschbacher Technische Universität München

Content

- 0. Introduction
- 1. Basic concepts of C^* -algebraic quantum statistical mechanics
- 2. Non-equilibrium steady states (NESS)
- 3. The scattering approach to NESS
- 4. The spectral approach to NESS
- 5. Entropy production
- 6. Application of the scattering approach: XY model
- 7. Application of the spectral approach: Fermi golden rule
- 8. Outlook

0. Introduction

non-equilibrium thermodynamics as macroscopic field theory has its roots in phenomenological laws, as e.g.,

- heat conduction (Fourier, 1822)
- electric conduction (Ohm, 1826)

Paradigm

open system, i.e., "finite" sample S coupled to reservoirs R_r

rigorous approach to:

non-equilibrium steady states? entropy production? Onsager relations? Kubo formula? Büttiker-Landauer formula? Fourier law? etc....??

use framework of C^* -algebraic quantum statistical mechanics...

1. Basic concepts of C^* -algebraic quantum statistical mechanics [JP02], [BR], [AJPP05],...

1.1 C^* -dynamical systems (\mathcal{O}, τ)

• (unital) C^* -algebra \mathcal{O}

Banach *-algebra (algebra, involution *, norm $\|\cdot\|$, complete, $\|A^*\| = \|A\|$) with $\|A^*A\| = \|A\|^2$

• strongly continuous group $\mathbb{R} \ni t \mapsto \tau^t$ of *-automorphisms of \mathcal{O} Examples $\mathcal{L}(\mathcal{H})$ (unital); $\mathcal{L}^{\infty}(\mathcal{H})$ (not unital)

1.2 States ω

- normalized $(\omega(1) = 1)$, positive $(\omega(A^*A) \ge 0)$ linear functional on \mathcal{O}
- $\mathcal{E}(\mathcal{O})$ Set of states convex weak*-compact subset of \mathcal{O}^* ; $U_{A_j,\epsilon}(\omega) = \{\omega': |\omega'(A_j) \omega(A_j)| < \epsilon\}$
- (τ, β) -KMS states. (\mathcal{O}, τ) C^* -dynamical system, $\beta \in \mathbb{R}$.

$$\omega(A\tau^{i\beta}(B)) = \omega(BA)$$

A,B in (subalgebra of) dense *-subalgebra \mathcal{O}_{τ} of \mathcal{O} of entire analytic elements for τ

interpretation: systems in thermal equilibrium at temperature $1/\beta$ Example (i.g. formal) Gibbs state $\omega(A) = \text{tr}(e^{-\beta H}A)/Z$ (e.g. finite system, Fermi: unique)

1.3 GNS representation

 $\omega \in \mathcal{E}(\mathcal{O})$. [GNS] (unique) cyclic representation $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ of \mathcal{O} :

$$\omega(A) = (\Omega_{\omega}, \pi_{\omega}(A)\Omega_{\omega})$$

• $\eta \in \mathcal{E}(\mathcal{O})$ ω -normal : \Leftrightarrow exists density matrix ρ : $\eta(A) = \operatorname{tr}(\rho \pi_{\omega}(A))$ \mathcal{N}_{ω} set of all ω -normal states

1.4 (Concrete) von Neumann algebra

• commutant \mathcal{H} Hilbert space, $\mathcal{M} \subseteq \mathcal{L}(\mathcal{H})$

$$\mathcal{M}' := \{ A \in \mathcal{L}(\mathcal{H}) \mid [A, M] = 0, M \in \mathcal{M} \}$$

 $\mathcal{M} \subseteq \mathcal{M}'' = \mathcal{M}^{(iv)} = \mathcal{M}^{(vi)} = \dots; \quad \mathcal{M}' = \mathcal{M}''' = \mathcal{M}^{(v)} = \mathcal{M}^{(vii)} = \dots$

• von Neumann algebra $\mathcal{M}'' = \mathcal{M}$

Examples $\mathcal{L}(\mathcal{H})$; not $\mathcal{L}^{\infty}(\mathcal{H})$ $(\mathcal{L}^{\infty}(\mathcal{H})' = \mathbb{C}1)$

 \mathcal{M} von Neumann algebra over \mathcal{H} , $\Omega \in \mathcal{H}$, $\mathcal{M}\Omega := \{A\Omega \mid A \in \mathcal{M}\}$

- $\Omega \in \mathcal{H}$ cyclic : $\Leftrightarrow \overline{\mathcal{M}\Omega} = \mathcal{H}$
- $\Omega \in \mathcal{H}$ separating : $\Leftrightarrow \Omega \in \ker A$: A = 0

1.5 Tomita-Takesaki theory

- ullet $\mathcal M$ von Neumann algebra over $\mathcal H$, $\Omega \in \mathcal H$ cyclic and separating
- transfer *-involution on \mathcal{M} to dense subspace $\mathcal{M}\Omega$ of \mathcal{H} : $\theta: \mathcal{M} \to \mathcal{M}\Omega, \ A \mapsto A\Omega$ θ injective (separating), $\mathcal{M}\Omega$ dense (cyclic)

$$S_0: \mathcal{M}\Omega \to \mathcal{M}\Omega, \quad S_0 A \Omega = A^*\Omega \qquad \begin{array}{ccc} \mathcal{M} & \stackrel{\theta^{-1}}{\longleftarrow} \mathcal{M}\Omega \\ *\downarrow & & \downarrow S_0 \\ \mathcal{M} & \stackrel{\theta}{\longrightarrow} \mathcal{M}\Omega \end{array}$$

- polar decomposition of $S = \overline{S}_0$, $S = J\sqrt{\Delta_{\omega}}$ modular conjugation J, modular operator Δ_{ω}
- [TT] $J\mathcal{M}J = \mathcal{M}', \ \Delta_{\omega}^{it}\mathcal{M}\Delta_{\omega}^{-it} = \mathcal{M}, \ t \in \mathbb{R}$
- here: $\mathcal{M} \equiv \mathcal{M}_{\omega} := \pi_{\omega}(\mathcal{O})'' \subseteq \mathcal{L}(\mathcal{H}_{\omega})$.
- $\omega \in \mathcal{E}(\mathcal{O})$ modular : $\Leftrightarrow \Omega_{\omega}$ is separating for \mathcal{M}_{ω} Example KMS state

1.6 Liouvilleans

 $\omega \in \mathcal{E}(\mathcal{O})$ modular.

- natural cone $\mathcal{P} := \overline{\{AJA\Omega_{\omega} \mid A \in \mathcal{M}_{\omega}\}}$ $\eta \in \mathcal{N}_{\omega}$. exists unique $\Omega_{\eta} \in \mathcal{P}$: $\eta(A) = (\Omega_{\eta}, \pi_{\omega}(A)\Omega_{\eta})$
- ullet standard Liouvillean L

 (\mathcal{O}, τ) C^* -dynamical system. exists unique self-adjoint L on \mathcal{H}_{ω} :

$$\pi_{\omega}(\tau^{t}(A)) = e^{itL}\pi_{\omega}(A)e^{-itL}, \quad e^{-itL}\mathcal{P} \subseteq \mathcal{P}$$

1.7 Quantum statistical mechanics and modular theory

- study of ω -normal τ -invariant states reduces to the study of $\ker L$ $\eta \in \mathcal{N}_{\omega}$. η τ -invariant $\Leftrightarrow L\Omega_{\eta} = 0$
- $\Delta_{\omega} = e^{\mathcal{L}_{\omega}}$. [T] ω is (τ, β) -KMS $\Leftrightarrow \mathcal{L}_{\omega} = -\beta L$
- quantum Koopmanism: spectral properties of standard Liouvillean encode ergodic properties

Example [JP96] RTE if L has purely absolutely continous spectrum except for simple eigenvalue 0

1.8 Local perturbations

- (\mathcal{O}, τ) C^* -dynamical system, local perturbation $V = V^* \in \mathcal{O}$, δ generator of τ^t δ *-derivation of \mathcal{O} : $\delta(A^*) = \delta(A)^*$, $\delta(AB) = \delta(A)B + A\delta(B)$, $A, B \in \mathcal{D}(\delta)$
- ullet generator δ_V of perturbed dynamics $au_V^t := e^{t\delta_V}$

$$\delta_V(A) := \delta(A) + i[V, A]$$

Dyson series

$$\tau_V(A) = \tau(A) + \sum_{n \ge 1} i^n \int_0^t dt_1 \int_0^{t_1} dt_2 \dots \int_0^{t_{n-1}} dt_n \left[\tau^{t_n}(V), \left[\dots \left[\tau^{t_1}(V), \tau^t(A) \right] \dots \right] \right]$$

- \bullet (\mathcal{O}, τ_V) is C^* -dynamical system
- ullet ω modular. standard Liouvillean for perturbed system L_V

$$L_V = L + V - JVJ$$

L standard Liouvillean for au

1.9 Examples

1.9.1 Finite quantum systems

• C^* -dynamical systems (\mathcal{O}, τ) , (\mathcal{O}, τ_V) $\mathcal{H} = \mathbb{C}^N$, $\mathcal{O} = \mathcal{L}(\mathcal{H})$; $H = H^*$, $V = V^*$ $\tau^t(A) = e^{itH}Ae^{-itH}, \quad \tau^t_V(A) = e^{it(H+V)}Ae^{-it(H+V)}$

• State any $\omega \in \mathcal{E}(\mathcal{O})$: $\omega(A) = \operatorname{tr}(\rho A)$, ρ density matrix on \mathcal{H}

Example unique (τ, β) -KMS state, $\beta \in \mathbb{R}$: $\rho = e^{-\beta H}/\mathrm{tr}(e^{-\beta H})$

ullet GNS representation $\lambda_j \geq 0, \psi_j$ eigenvy of ho, complex conjugation on ${\cal H}$

$$\mathcal{H}_{\omega} = \mathcal{H} \otimes \mathcal{H}, \quad \pi_{\omega}(A) = A \otimes \mathbf{1}, \quad \Omega_{\omega} = \sum \sqrt{\lambda_j} \, \psi_j \otimes \psi_j$$

- Modular structure $J(\psi \otimes \phi) = \phi \otimes \psi$, $\mathcal{L}_{\omega} = \log \Delta_{\omega} = \log \rho \otimes 1 1 \otimes \log \rho$
- ullet Standard Liouvillean $L=H\otimes {f 1}-{f 1}\otimes H$

No interesting thermodynamics for isolated finite quantum systems...but couple them to thermal reservoirs!

1.9.2 Free Fermi gas

• C^* -dynamical system (\mathcal{O}, τ) 1-Fermion: Hilbert space \mathfrak{h} , Hamiltonian h

Examples free non-relativistic spinless electron of mass m: $\mathfrak{h}=L^2(\mathbb{R}^3)$, $h=p^2/2m$; spinless lattice Fermion: $\mathfrak{h}=l^2(\mathbb{Z}^d)$, $h=-\Delta$

Fock space $\mathfrak{F}(\mathfrak{h})$, bounded annihilation, creation operators $a(f), a^*(f)$ $\mathcal{O} = \mathsf{CAR}(\mathfrak{h})$ generated by $a^\sharp(f), f \in \mathfrak{h}$

$$\tau^t(a^{\sharp}(f)) = a^{\sharp}(e^{ith}f), \quad \tau^t(A) = e^{itH}Ae^{-itH}, \ H = d\Gamma(h)$$

ullet Quasi-free, gauge-invariant state $T^*=T\in\mathcal{L}(\mathfrak{h})$, $0\leq T\leq 1$

$$\omega(a^*(f_1)...a^*(f_n)a(g_1)...a(g_m)) = \delta_{m,n} \det\{(g_i, Tf_j)\}$$

completely determined by 2-point function:

$$\omega(a^*(f)a(g)) = (g, Tf)$$

Examples T = F(h): Fermi gas with energy density F(E), e.g., $T = (1 + e^{\beta h})^{-1}$: unique (τ, β) -KMS state; cf. XY !; Pfaffian for *self-dual* CAR, cf. XY

ullet GNS representation [AW63] N number operator, Ω Fock vacuum

$$\mathcal{H}_{\omega} = \mathfrak{F}(\mathfrak{h}) \otimes \mathfrak{F}(\mathfrak{h}), \quad \Omega_{\omega} = \Omega \otimes \Omega,$$

$$\pi_{\omega}(a(f)) = a((1-T)^{1/2}f) \otimes 1 + (-1)^{N} \otimes a^{*}(T^{1/2}f)$$

Modular structure

$$J(\psi \otimes \phi) = U\phi \otimes U\psi, \ U = (-1)^{N(N-1)/2}$$

$$\mathcal{L}_{\omega} = \log \Delta_{\omega} = d\Gamma(S) \otimes 1 - 1 \otimes d\Gamma(S), \ S = \log T(1-T)^{-1}$$

Standard Liouvillean

$$L = d\Gamma(h) \otimes 1 - 1 \otimes d\Gamma(h)$$

1.9.3 Lattice spin systems c.f. 6.

2. Non-equilibrium steady states (NESS)

 (\mathcal{O}, τ) C^* -dynamical system, $\omega \in \mathcal{E}(\mathcal{O})$, V local perturbation

$$\Sigma_{+}(\omega) := \operatorname{weak}^*-\lim \operatorname{pt} \left\{ \frac{1}{T} \int_0^T dt \ \omega \circ \tau_V^t, \ T > 0 \right\}$$

- ullet non-empty, weak*-compact subset of the weak*-compact set of states $\mathcal{E}(\mathcal{O})$ (\mathcal{O} unital) containing τ_V -invariant NESS [R00]
- Abelian averaging: $\epsilon \int_0^\infty dt \, e^{-\epsilon t} \omega \circ \tau_V^t$, $\epsilon \downarrow 0$ (spectral deformation)
- $\eta \in \mathcal{N}_{\omega}$ (ω factor, weak asymptotic abelianness in mean). [AJPP04] $\Sigma_{+}(\eta) = \Sigma_{+}(\omega)$
- structural properties of NESS, spectral characterization...

Example ω modular, ker L_V contains separating vector for \mathcal{M}_{ω} : $\Sigma_{+}(\omega) \subseteq \mathcal{N}_{\omega}$

The response of the system to a local perturbation depends strongly on the nature of the initial state ω :

System near equilibrrum: ω (τ, β) -KMS

$$\lim_{t \to \infty} \eta(\tau_V^t(A)) = \omega_V(A)$$

 $\eta \in \mathcal{N}_{\omega}$, ω_{V} (τ_{V}, β) -KMS

- ullet ergodic problem reduces to spectral analysis of Liouvillean L_V
- conceptually clear, spectral analysis done for few systems only

System far from equilibirum: η not normal w.r.t. some KMS state

• conceptual framework not well understood, the following two approaches are used (rigorous literature!)

3. The scattering approach to NESS

Møller morphism γ_+ (\mathcal{O},τ) C^* -dynamical system, V local perturbation

$$\gamma_{+} = \lim_{t \to \infty} \tau^{-t} \tau_{V}^{t}$$

algebraic analog of Hilbert space wave operator

NESS ω τ -invariant. $\omega_{+} = \omega \circ \gamma_{+}$

Example ω (τ, β) -KMS $\Rightarrow \omega_+$ (τ_V, β) -KMS

ullet algebraic Cook criterion for the existence of γ_+ A in dense subset \mathcal{O}_0 of \mathcal{O}

$$\int_0^\infty dt \, \|[V, \tau_V^t(A)]\| < \infty$$

Remark difficult to verify in physically interesting models

Examples reduction to Hilbert space scattering problem for quasi-free systems [AP03], [AJPP ip]; locally perturbed Fermi gas [BM83]

4. The spectral approach to NESS [JP02]

 $\ker L_V$ provides information about ω -normal, τ_V -invariant states; but thermodynamically interesting NESS not in \mathcal{N}_ω !

usual approach: scattering theory

C-Liouvillean L*

 (\mathcal{O}, au) C^* -dynamical system, ω modular, τ -invariant, V local perturbation assumptions about analytic continuation of $\Delta_\omega^{it} V \Delta_\omega^{-it}$, etc.

$$L^* = L + V - J\Delta^{-1/2}V\Delta^{1/2}J$$

implements perturbed time evolution $\tau_V^t(A) = e^{it L^*} A e^{-it L^*}, \ A \in \mathcal{M}_{\omega}$

(Abelian) NESS are weak* limit points of $\epsilon/i\omega_{i\epsilon}$ for $\epsilon\downarrow 0$, where:

$$\omega_z(A) = i \int_0^\infty dt \ e^{izt} \omega(\tau_V^t(A)) = (\Omega_\omega, A(\mathsf{L}^* - z)^{-1} \Omega_\omega)$$

⇒ NESS described by resonance of L*!

5. Entropy production

Phenomenology: entropy production σ is source term in local entropy density balance equation

$$\partial_t s + \operatorname{div} s = \sigma$$

s entropy, s entropy flow; local formulation of 2nd law of thermodynamics system \mathcal{S} coupled to thermal reservoirs \mathcal{R}_k at temperatures $1/\beta_k$ \Rightarrow stationary state: total entropy production in \mathcal{S} equals entropy flux leaving \mathcal{S} : $-\sum_k \beta_r \, \phi_k$, ϕ_k energy current leaving \mathcal{R}_k

$$\mathsf{Ep}(\omega_+)$$

- (\mathcal{O}, τ) C^* -dynamical system, ω τ -invariant, V local perturbation.
- (A) exists C^* dynamics σ_{ω} : ω is $(\sigma_{\omega}, -1)$ -KMS

Example $\omega = \otimes_k \omega_k$, ω_k is (τ_k, β_k) -KMS, satisfies (A) for $\sigma_\omega^t = \otimes_k \tau_k^{-\beta_k t}$, $\delta_\omega = -\sum_k \beta_k \delta_k$

Entropy production of locally perturbed system (\mathcal{O}, τ_V) in NESS $\omega_+ \in \Sigma_+(\omega)$:

$$\mathsf{Ep}(\omega_+) := \omega_+(\delta_\omega(V))$$

Example
$$\omega = \otimes_k \omega_k$$
, ω_k is (τ_k, β_k) -KMS: $\mathsf{Ep}(\omega_+) = -\sum_k \beta_k \omega_+(\delta_k(V)) = -\sum_k \beta_k \phi_k$

[JP02]:

 entropy production as asymptotic rate of decrease of relative entropy (cf. [S78], [LS78]; [OHI88], [O89], [O91])

 $\mathsf{Ent}(\eta \circ \tau^t | \omega) - \mathsf{Ent}(\eta | \omega) = \int_0^t ds \; \eta \circ \tau^s(\delta_\omega(V))$

- $\mathsf{Ep}(\omega_+) \geq 0$
- ω_+ ω -normal \Rightarrow Ep(ω_+) = 0
- ω_+ weakly ergodic. Ep $(\omega_+) = 0 \Rightarrow \omega_+ \omega$ -normal
- \bullet ω_{+} KMS, iff Ep = 0 for sufficiently many local perturbations

6. Application of the scattering approach: XY model

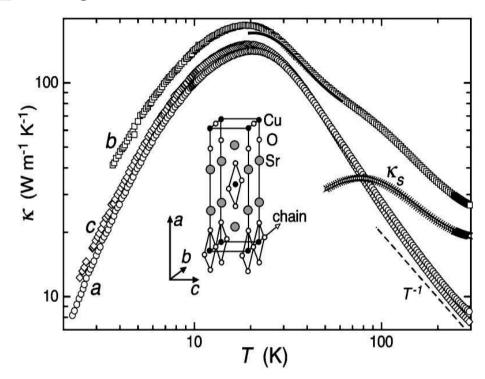
- "integrable" models as essential tools in development of equilibrium statistical mechanics *out* of equilibrium: dynamics crucial!
- XY model one of few systems for which explicit knowledge of dynamics available

 Jordan-Wigner transformation!
- integrability may be traced back to infinite family of charges master symmetries [BF85], [A90]

integrability relates to anomalous transport:

theoretically: overlap of current with charges prevents current-current correlation to decay to zero: ideal thermal conductivity numerically: Fourier law violated for "integrable" systems experimentally: anomalous transport properties in low-dimesional magnetic systems, e.g. Heisenberg models

• Sr₂CuO₃



- best physical realization of 1d, S=1/2 XYZ Heisenberg model: interchain/intrachain interaction: $\sim 10^{-5}$ (PrCl₃: XY)
- anomalously enhanced conductivity along chain direction [S00]

electric insulator; T high: spinons \gg phonons, limited by defects & phonons

XY chain

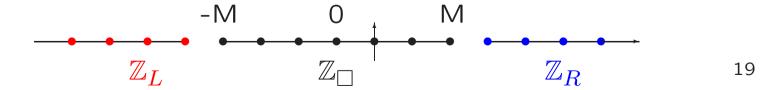
inifinite chain of spins interacting anisotropically with two nearest neighbors and with external magnetic field: $\gamma \in (-1,1)$, $\lambda \in \mathbb{R}$

$$H = -\frac{1}{4} \sum_{x \in \mathbb{Z}} \left((1+\gamma)\sigma_1^{(x)}\sigma_1^{(x+1)} + (1-\gamma)\sigma_2^{(x)}\sigma_2^{(x+1)} + 2\lambda\sigma_3^{(x)} \right)$$

6.1 Non-equilibrium setting [AP03]

remove bonds (-M-1,-M) and (M,M+1) \Rightarrow 3 decoupled subsystems with (τ_L,β_L) , $(\tau_\square,0)$, (τ_R,β_R) -KMS states $\omega_0=\omega_L^{\beta_L}\otimes\omega_\square\otimes\omega_R^{\beta_R}$

infinite half-chains \mathbb{Z}_L , \mathbb{Z}_R play role of thermal reservoirs to which finite subsystem \mathbb{Z}_\square is attached via coupling $V=H-H_0$



6.2 Kinematics

• algebra of observables $\mathcal{O} \equiv \mathfrak{S}$ uniformly hyperfinite quasi-local C^* algebra \mathfrak{S} over \mathbb{Z} , i.e., associate Hilbert space $\mathcal{H}_{\{x\}} = \mathbb{C}^2$ to $x \in \mathbb{Z}$, and for *finite* subset Λ of \mathbb{Z} ,

$$\mathcal{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathcal{H}_{\{x\}}, \quad \mathfrak{S}_{\Lambda} = \mathcal{L}(\mathcal{H}_{\Lambda})$$

infinite tensor product of $\mathcal{L}(\mathcal{H}_{\{x\}})$ for x in arbitrary subset \mathcal{Z} of \mathbb{Z} ,

$$\mathfrak{S}_{\mathcal{Z}} = \bigcup_{\Lambda \subset \mathcal{Z}} \mathfrak{S}_{\Lambda},$$

i.e., uniform limit of polynomials in Pauli matrices $\sigma_{\alpha}^{(x)}$, $\alpha=0,1,2,3$

$$\mathfrak{S} = \mathfrak{S}_{\mathbb{Z}}, \quad \mathfrak{S}_L = \mathfrak{S}_{\{x < -M\}}, \quad \mathfrak{S}_{\square} = \mathfrak{S}_{\{-M \le x \le M\}}, \quad \mathfrak{S}_R = \mathfrak{S}_{\{x > M\}}$$

6.3 Dynamics

• local XY Hamiltonian $H_{\Lambda} = \sum_{X \subset \Lambda} \phi(X)$, interaction $\phi: X \to \mathfrak{S}_X$

$$\phi(X) = \begin{cases} -\frac{1}{2}\lambda\sigma_3^{(x)}, & X = \{x\}, \\ -\frac{1}{4}\{(1+\gamma)\sigma_1^{(x)}\sigma_1^{(x+1)} + (1-\gamma)\sigma_2^{(x)}\sigma_2^{(x+1)}\}, & X = \{x, x+1\}, \\ 0, & \text{otherwise} \end{cases}$$

short range, two-body

local perturbed dynamics, its thermodynamic limit

$$\tau_{\Lambda}^{t}(A) = e^{itH_{\Lambda}}Ae^{-itH_{\Lambda}}, \quad \tau^{t}(A) = \lim_{\Lambda \uparrow \mathbb{Z}} \tau_{\Lambda}^{t}(A)$$

- \Rightarrow perturbed C^* -dynamical system (\mathfrak{S}, τ)
- ullet free dynamics from local perturbation V

$$V = \phi(\{-M - 1, -M\}) + \phi(\{M, M + 1\})$$

 \Rightarrow free C^* -dynamical system (\mathfrak{S}, τ_0)

$$\mathfrak{S} = \mathfrak{S}_L \otimes \mathfrak{S}_{\square} \otimes \mathfrak{S}_R, \quad \tau_0^t = \tau_L^t \otimes \tau_{\square}^t \otimes \tau_R^t$$

6.4 Jordan-Wigner transformation: key to "exact solution"

$$a_x := TS^{(x)}(\sigma_1^{(x)} - i\sigma_2^{(x)})/2, \quad S^{(x)} = \begin{cases} \sigma_3^{(1)} \cdots \sigma_3^{(x-1)}, & x > 1\\ 1, & x = 1\\ \sigma_3^{(x)} \cdots \sigma_3^{(0)}, & x < 1 \end{cases}$$

 a_x, a_x^* generate CAR algebra! T for *two*-sided chain $(\mathfrak{F} \otimes_{\theta_-} \mathbb{Z}_2 \text{ crossed product})$ [A84]

interaction becomes quadratic

$$\phi(X) = \begin{cases} -\frac{1}{2}\lambda(2a_x^*a_x - 1), & X = \{x\} \\ \frac{1}{2}\{a_x^*a_{x+1} + a_{x+1}^*a_x + \gamma(a_x^*a_{x+1}^* + a_{x+1}a_x)\}, & X = \{x, x+1\} \\ 0, & \text{otherwise} \end{cases}$$

dynamics become Bogoliubov automorphisms

$$\tau^t(B(f)) = B(e^{ith}f), \quad \tau_0^t(B(f)) = B(e^{ith_0}f)$$

self-dual CAR algebra with $B(f) = \sum_{x \in \mathbb{Z}} f_+(x) a_x^* + f_-(x) a_x$, $f = (f_+, f_-) \in \ell^2(\mathbb{Z}) \oplus \ell^2(\mathbb{Z})$ [A71] with 1-particle Hamiltonians

$$h = (\cos \xi - \lambda) \otimes \sigma_3 - \gamma \sin \xi \otimes \sigma_2, \quad h_0 = h - v = h_L \oplus h_{\square} \oplus h_R$$

Fourier variable ξ , V (self-dual) 2nd quantization of v

Non-equilibrium properties

6.5 Existence and uniqueness of NESS

Theorem

Let $\beta_L, \beta_R \in \mathbb{R}$, $M \in \mathbb{N}$. Then:

$$\Sigma_{+}(\omega_{0}) = \{\omega_{+}\}$$

Proof

- [A84] $\beta_L = \beta_R \equiv \beta$: ω_+ unique (τ, β) -KMS, RTE
- [KB] $1_{ac}(h) = 1$, $v \in \mathcal{L}^0$: $w_-^* = s$ -lim $e^{ith_0} e^{-ith}$ exists, complete
- $||B(f)|| \le ||f||$, norm convergence

$$\tau_0^{-t}\tau^t(B(f)) = B(e^{-ith_0}e^{ith}f) \Rightarrow B(w_-^*f) = \gamma_+(B(f)) \Rightarrow \omega_+ = \omega_0 \circ \gamma_+$$

6.6 2-point operator T_+ of ω_+

Theorem

 ω_+ has 2-point function $\omega_+(B^*(f)B(g))=(f,T_+g)$

$$T_{+} = (1 + e^{k_{+}})^{-1}, \quad k_{+} = (\beta + \delta \operatorname{sign} v_{-}) h$$

 v_{-} asymptotic velocity (in past), $\beta = (\beta_R + \beta_L)/2$, $\delta = (\beta_R - \beta_L)/2$

Proof

- $\bullet \ \omega_+ = \omega_0 \circ \gamma_+ \Rightarrow T_+ = w_- T_0 w_-^*$
- ullet partial wave operators w_{α} , asymptotic projections P_{α}

 $j_{\alpha} \colon \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2 \to \ell^2(\mathbb{Z}_{\alpha}) \otimes \mathbb{C}^2$, $\alpha = L, R$: canonical projections

$$w_{\alpha}^* = \underset{t \to -\infty}{\text{s-lim}} e^{ith_{\alpha}} j_{\alpha} e^{-ith}, \quad P_{\alpha} = \underset{t \to -\infty}{\text{s-lim}} e^{ith} j_{\alpha}^* j_{\alpha} e^{-ith}$$

[KB], [DS] existence, completeness of P_{α} , $w_{-}^{*} = \sum_{\alpha \in \{L,R\}} j_{\alpha}^{*} w_{\alpha}^{*}$, $h_{\alpha} w_{\alpha}^{*} = w_{\alpha}^{*} h$, $P_{\alpha} = w_{\alpha} w_{\alpha}^{*}$, $P_{L} + P_{R} = I$, $[P_{\alpha}, h] = 0$

• from $T_0 = (1 + e^{k_0})^{-1}$ with $k_0 = \beta_L h_L \oplus 0 \oplus \beta_R h_R$ $T_+ = (1 + e^{k_+})^{-1}, \quad k_+ = \beta h + \delta \left(P_R - P_L \right) h$

• since $1_{ac}(h) = 1$ $(x = -i\partial_{\xi} \otimes 1, x_t = e^{-ith}xe^{ith})$

$$P_R - P_L = \underset{t \to \infty}{\text{s-lim sign }} \frac{x_t}{t}$$

• solve $\dot{x}_t=p_t$: $\mathrm{S-lim}_{t\to\infty}\frac{x_t}{t}=\mu h$ $(\mu=\mathrm{ph/h^2} \ \mathrm{with} \ p=-i[h,x]=\mathrm{p}\cdot\sigma,\ h=\mathrm{h}\cdot\sigma)$ $v_-:=\mathrm{s-res-lim}_{t\to\infty}\frac{x_t}{t}=\mu h, \quad P_R-P_L=\mathrm{sign}\ v_-$

Remarks

- since $k_+ = \beta_L h P_L \oplus \beta_R h P_R$ NESS ω_+ describes mixture of two *independent* species: left-movers from ran P_R carry β_R , right-movers from ran P_L carry β_L (cf. [ACF98])
- further properties: ω_+ is attractive, independent of M, translation invariant, primary, modular, quasi-free, KMS iff $\beta_L = \beta_R$, singular w.r.t. $\omega_0,...$

6.7 Entropy production

entropy production in $\omega_{+} \in \Sigma_{+}(\omega_{0})$

$$\mathsf{Ep}(\omega_{+}) = \beta_L \, \omega_{+}(\Phi_L) + \beta_R \, \omega_{+}(\Phi_R)$$

$$\Phi_L = -i[H, H_L]$$
, $\Phi_R = -i[H, H_R]$: Heat fluxes \mathbb{Z}_L , $\mathbb{Z}_R \to \mathbb{Z}_\square$

Theorem

$$\mathsf{Ep}(\omega_{+}) = \frac{\delta}{4} \int_{0}^{2\pi} \frac{d\xi}{2\pi} |\mathbf{p} \cdot \mathbf{h}| \frac{\sinh \delta |h|}{\cosh^{2}(\beta |h|/2) + \sinh^{2}(\delta |h|/2)}$$

$$\mathsf{Ep}(\omega_{+}) > 0 \quad \text{if } \beta_{L} \neq \beta_{R}$$

Proof explicit computation! □

Remark

[AJPP ip] non-equilibrium properties for general quasi-free systems

7. Application of the spectral approach: Spin-Fermion model

- finite quantum system S (spin): (\mathcal{O}_S, τ_S) (cf. 1.9.1)
- reservoirs \mathcal{R}_r (r=L,R): (\mathcal{O}_r,τ_r) (cf. 1.9.2)
- $V_L = \varphi(\alpha_L) \otimes Q_L \otimes 1$, $V_R = 1 \otimes Q_R \otimes \varphi(\alpha_R)$, $V = V_L + V_R$

Segal field operator φ quantizing (sufficiently regular) coupling functions α_r , and $Q_r \in \mathcal{L}(\mathcal{H}_S)$

ullet initial state $\omega=\omega_L\otimes\omega_S\otimes\omega_R$ ω_S trace state, ω_r (au_r,eta_r) -KMS

lowest order entropy production [JP02]

$$Ep(\omega_{+}^{\lambda}) = \lambda^{2} \sigma(\rho_{0}) + \mathcal{O}(\lambda^{3})$$

$$-\sigma(\rho_{0}) = \beta_{L} \omega_{\rho_{0}}(K_{L}H_{S}) + \beta_{R} \omega_{\rho_{0}}(K_{R}H_{S})$$

spectral theory of C-Liouvillean: resonances from complex translation; $\sigma(\rho_0)$ entropy production in van Hove weak coupling limit: K_L , K_R Davies generators, $\omega_{\rho_0}(\cdot) = \operatorname{tr}(\rho_0 \cdot)$, $\ker(K_L + K_R) = \{\rho_0\}$

strict positivity of entropy production [AS ip] small, good coupling [LS78]

$$\{H_{\mathcal{S}}, Q_r\} = \mathbb{C}1 \implies \sigma(\rho_0) > 0 \implies \mathsf{Ep}(\omega_+^{\lambda}) > 0$$

Examples $\mathcal{H}_{\mathcal{S}} = \mathbb{C}^2$, single spin; $\mathcal{H}_{\mathcal{S}} = \mathbb{C}^4$, XY

8. Outlook

- correlation functions: long range out of equilibrium ?
- integrability, conserved charges, and Fourier law?
- Gallavotti-Cohen symmetry of entropy production ?
- non-equilibrium phase transitions?
- etc....