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0. Introduction

non-equilibrium thermodynamics as macroscopic field theory has its
roots in phenomenological laws, as e.g.,

e heat conduction (Fourier, 1822)

e electric conduction (Ohm, 1826)

Paradigm
open system, i.e., ‘“finite” sample S coupled to reservoirs R,

rigorous approach to:

non-equlibrium steady states? entropy production? Onsager rela-
tions? Kubo formula? Buttiker-Landauer formula? Fourier law?
etc....??

use framework of C*-algebraic quantum statistical mechanics...
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1. Basic concepts of C*-algebraic quantum statistical mechanics
[JP02], [BR], [AJPPO5],...

1.1 C*-dynamical systems (O, 1)
e (unital) C*-algebra O

Banach x-algebra (algebra, involution %, norm || - ||, complete, [|A*|| = ||A]|) with |[|[A*A| = || A]?

e strongly continuous group R 3t — 7t of x-automorphisms of O

Examples L(H) (unital); £°(H) (not unital)

1.2 States w

e normalized (w(1) = 1), positive (w(A*A) > 0) linear functional on O
e £(0O) set of states convex weak*-compact subset of 0%; Ua, .(w) = {w': [w'(A;) —w(A;)| < €}
o (7,3)-KMS states. (O,7) C*-dynamical system, 3 € R.

w(ATP(B)) = w(BA)
A, B in (subalgebra of) dense x-subalgebra O, of O of entire analytic elements for r

interpretation: systems in thermal equilibrium at temperature 1/

Example (i.g. formal) Gibbs state w(A) =tr(e ##A)/Z (e.g. finite system, Fermi: unique)



1.3 GNS representation
w e E(O). [GNS] (unique) cyclic representation (Hy, 7w, Qw) of O:
w(A) = (Qu, T (A)2w)

e € £(O) w-normal & exists density matrix p: n(A) = tr(prw(A))
N, set of all w-normal states

1.4 (Concrete) von Neumann algebra
e commutant H Hilbert space, M C L(H)

M ={Ae L(H)| [A,M] =0, M € M}

M C M = M(z‘v) — M(m’) = .. M = M" = M(v) — M(m‘i) — .
e von Neumann algebra M = M
Examples L(H); not LY(H) (L>*(H) = C1)

M von Neumann algebra over H, Q2 € H, M := {AQ| A € M}
o (2 cH cyclic :& MQ2="H
o (2 ¢ 'H separating & Q2e kerA: A=0



1.5 Tomita-Takesaki theory
e M von Neumann algebra over 'H, €2 € 'H cyclic and separating

e transfer x-involution on M to dense subspace M2 of H:
0. M — MQ, A— AS2 9 injective (separating), M dense (cyclic)
g1
M — MQ
So i MQ — MQ, SgAQ = A*Q x| 1 So
M Lm0

e polar decomposition of S = S, S = JVA
modular conjugation J, modular operator A,

o [TT] JIMJ =M, AUYMAZ? = M, teR

e wc £(O) modular ;& Q is separating for My,
Example KMS state



1.6 Liouvilleans

w € E(O) modular.

e natural cone P :={AJAQ, | A € My}

n € No. exists unique 2, € P: n(A) = (2, 1w (A)2y)

e Standard Liouvillean L
(O, 1) C*-dynamical system. exists unique self-adjoint L on H:

mw(t'(A)) = elm,(A)e ", eTtpCp

1.7 Quantum statistical mechanics and modular theory

e study of w-normal r-invariant states reduces to the study of ker L
n € Nw. n 7-invariant < L2, =0

e N, =¢clv. [T wis (1,8)-KMS < £, = —3L

e quantum Koopmanism: spectral properties of standard Liouvillean
encode ergodic properties

Example [JP96] RTE if L has purely absolutely continous spectrum except for simple eigenvalue 0
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1.8 Local perturbations
e (O,7) C*-dynamical system, local perturbation V =V* € O,
d generator of Tt 5 x-derivation of O: §(A*) = 6(A)*, 6(AB) = 6(A)B+ Aé(B), A, B € D(6)
e generator &y of perturbed dynamics i, := efov
oy (A) :=6(A) +ilV, Al
e Dyson series

Tv(A) = T(A)+n§1 3" /O t di1 /O " dts... /O tn_ldtn [ (V), [..[71(V), 71 (A)]...]]

e (O,1y) is C*-dynamical system
e w modular. standard Liouvillean for perturbed system Ly,

Ly=L+V—JvJ

L standard Liouvillean for t



1.9 Examples
1.9.1 Finite quantum systems
e C*-dynamical systems (O, 1), (O,7v) H = (CN, O=L(H), H=H*, V=V~

FH(A) = tH ge—itH i (A) = Gt(HAV) g —it(H+V)
o State any w € £(0): w(A) =tr(pA), p density matrix on H
Example unique (7, 8)-KMS state, 8 € R: p = e P /tr(e PH)
e GNS representation A; > 0,1, eigenvv of p, complex conjugation on H
Ho=HOMH, m(A)=A81 Qu=>3 \/A\;e1v;
e Modular structure J(Yy ® p) = o Ry, L, =100 Ay =10gpR®1—1®10gp
e Standard Liouvillean L=H XK1 -1 H

No interesting thermodynamics for isolated finite quantum systems...but
couple them to thermal reservoirs!



1.9.2 Free Fermi gas
o C*-dynamical system(0O,7) l-Fermion: Hilbert space fj, Hamiltonian h

Examples free non-relativistic spinless electron of mass m: §h = L?(R3), h = p2/2m; spinless lattice

Fermion: h =12(Z%), h=—-A
Fock space §(h), bounded annihilation, creation operators a(f), a*(f)
O = CAR(h) generated by af(f), f € b
(@ (1) = af(f),  TH(A) =M A H = dr(n)
e Quasi-free, gauge-invariant state T* =T € L(h), 0<T <1

w(a*(f1)...a*(fn)a(g1)...algm)) = dmmn det{(g;, Tf;)}
completely determined by 2-point function:

w(a™(flalg)) = (g, Tf)

Examples T = F(h): Fermi gas with energy density F(E), e.g., T = (1+¢e°*)~1: unique (7, 3)-KMS
state; cf. XY !, Pfaffian for self-dual CAR, cf. XY



e GNS representation [AW63] N number operator, 2 Fock vacuum

rw(a(f)) = a((Q-=T)1?H o1+ (-1)N @a*(T?f)
e Modular structure

J(Y ® ¢)
Lo

Up® Uy, U= (—1)NN=1/2
0g Ay, =dlM(S) ®1—1®dr(S), S=logT(1—T)"1

e Standard Liouvillean

L=dr(h)®1—1drh)

1.9.3 Lattice spin systems

c.f. 6.
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2. Non-equilibrium steady states (NESS)
(O, 1) C*-dynamical system, w € £(O), V local perturbation

1 T
> 1 (w) := weak*-lim pt {? /o dt woﬁ/, T > O}

e non-empty, weak*-compact subset of the weak*-compact set of
states £(O) (O unital) containing T -invariant NESS [ROO]

e Abelian averaging: e [°dte “woT{,, € | O (spectral deformation)

e n € N, (w factor, weak asymptotic abelianness in mean).
[AJPPO4] X4 (n) = X4 (w)

e structural properties of NESS, spectral characterization...

Example w modular, ker Ly contains separating vector for M,: X4 (w) C N,
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The response of the system to a local perturbation depends strongly
on the nature of the initial state w:

System near equilibirum: w (7, 3)-KMS

Jim n(rf-(4)) = wy(4)

YRS Nw, wy/ (TV75)_KMS
e crgodic problem reduces to spectral analysis of Liouvillean Ly,
e conceptually clear, spectral analysis done for few systems only

System far from equilibirum: n not normal w.r.t. some KMS state
e conceptual framework not well understood, the following two ap-
proaches are used (rigorous literaturel!)
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3. The scattering approach to NESS

Mgaller morphism Y+
(O, 1) C*-dynamical system, V local perturbation

Y4 = lim T_tT‘t/

t—00
algebraic analog of Hilbert space wave operator

NESS w 7-invariant. wy =woyy

Example w (7,08)-KMS = w; (7v, 8)-KMS

e algebraic Cook criterion for the existence of y4 A in dense subset Oy of O

|7 at v () < oo

Remark difficult to verify in physically interesting models

Examples reduction to Hilbert space scattering problem for quasi-free systems [AP03], [AJPP ip];

locally perturbed Fermi gas [BM83]
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4. The spectral approach to NESS [JP02]
ker Ly, provides information about w-normal, m-invariant states; but
thermodynamically interesting NESS not in N, !

usual approach: scattering theory

C-Liouvillean L*
(O, 1) C*-dynamical system, w modular, T-invariant,
V local perturbation assumptions about analytic continuation of AV A, etc.

L"=L+4+V-—Ja2yval/2g
implements perturbed time evolution 7i,(A) = etl” Ae—itl" A € M,

(Abelian) NESS are weak™ limit points of ¢/iw,;. for € | O, where:

wo(A) = z'/ooo dt ¢#tw(rh (A)) = (S, A(L* — 2)"12)

= NESS described by resonance of L* !
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5. Entropy production
Phenomenology: entropy production o is source term in local entropy
density balance equation

Ois +divs = o

s entropy, s entropy flow; local formulation of ond aw of thermodynamics

system S coupled to thermal reservoirs R, at temperatures 1/3;

= stationary state: total entropy production in & equals entropy flux
leaving &1 — > 1 Br ¢, ¢ €nergy current leaving Ry

Ep(ws)
e (O,7) C*-dynamical system, w 7-invariant, V local perturbation.

(A) exists C* dynamics ou: w is (ow, —1)-KMS

Example w = @ywi, wi is (4, Br)-KMS, satisfies (A) for of, = @7, ™, 6, = =, Budk
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Entropy production of locally perturbed system (O, ) in NESS
wi € X4 (w):
Ep(wy) == w4 (0w(V))

Example w = ®pwk, wi is (7, Br)-KMS:  Ep(wy) = =), Brw(6:(V)) = =, Br dn

[JPO2]:

e entropy production as asymptotic rate of decrease of relative entropy
(cf. [S78], [LS78]; [OHI88], [O89], [O91])

Ent(y o 7'lw)—Ent(nlw) = [} ds no*(6.(V))

e Ep(wy) >0

e wy w-normal = Ep(wy) =0

e wi weakly ergodic. Ep(wt) =0 = w4 w-normal

e wy KMS, iff Ep = 0O for sufficiently many local perturbations
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6. Application of the scattering approach: XY model

e ‘integrable” models as essential tools in development of equilibrium
statistical mechanics - out of equilibrium: dynamics cruciall

e XY model one of few systems for which explicit knowledge of dy-
namics available Jordan-Wigner transformation!

e integrability may be traced back to infinite family of charges
master symmetries [BF85], [A90]

integrability relates to anomalous transport:

theoretically: overlap of current with charges prevents current-current
correlation to decay to zero: ideal thermal conductivity

numerically: Fourier law violated for “integrable’” systems
experimentally: anomalous transport properties in low-dimesional mag-
netic systems, e.g. Heisenberg models

17



e SroCuOg3

e best physical realization of 1d,S = 1/2 XYZ Heisenberg model:
interchain/intrachain interaction: ~ 1072 (PrClz: XY)
e anomalously enhanced conductivity along chain direction [S0O]

electric insulator; T high: spinons > phonons, limited by defects & phonons
18



XY chain

inifinite chain of spins interacting anisotropically with two nearest
neighbors and with external magnetic field: v € (=1,1), A€ R

1 x x x x X
H = A > ((1 —+ 7)0§ )ag +1) + (1 — *y)ag )O'é +1) + 2)\0§ )>

=y

6.1 Non-equilibrium setting [APO3]

remove bonds (—M-1,—M) and (M, M+1)
= 3 decoupled subsystems with (77, 087), (77,0), (7g, Br)-KMS states

wo = ng R wr ® w]gR

infinite half-chains Z;, Zgr play role of thermal reservoirs to which
finite subsystem Z is attached via coupling V = H — Hg

-M O M

Ly, /n LR 19



6.2 Kinematics

e algebra of observables O =S
uniformly hyperfinite quasi-local C* algebra G over 7Z, i.e., associate
Hilbert space H{w} —C2toxc Z;, and for finite subset A of Z,

HA= Q) Hyp,  Sa = L(HA)

xeN
infinite tensor product of £(H{x}) for = in arbitrary subset Z of 7Z,
Sz= ] 6a,

NCZ

i.e.. uniform limit of polynomials in Pauli matrices ¢, o =0,1,2,3
S = 6y, Sy = 6{£C<—M}7 Sp = 6{—M§x§M}7 Sr= 6{£C>M}
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6.3 Dynamics

e local XY Hamiltonian Hp = > xca ¢(X), interaction ¢ : X — Gx

( —%/\a;(f), X =1z},
(X)) =1 —L{1+ 7)ol 4 (1 - )l X = {2,541},
|0, otherwise

short range, two-body
e |local perturbed dynamics, its thermodynamic limit

TA(A) = e inAeT N, T (A) = lim mA(A)

= perturbed C*-dynamical system (S, 1)
e free dynamics from local perturbation V

V=¢p({-M—-1,-M}) + ¢({M,M + 1})
= free C*-dynamical system (6, 7g)

S =661 6p, Tész;@TtD@T;%
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6.4 Jordan-Wigner transformation: key to “exact solution”

(@) . () oo e >
o o® g1

Ax, CL;';j generate CAR algebral! 7 for two-sided chain (§ ®¢ Z» crossed product) [A84]

e interaction becomes quadratic

( —%A(Qai’;aw — 1), X = {z}
P(X) =« %{a;ax+1 + CL;_|_1CL$ + v(a;a;_l_l + ax_|_1a;,;)}, X ={z,z+ 1}
\ 0, otherwise

e dynamics become Bogoliubov automorphisms

r'(B(f)) = B(e""f), 14(B(f)) = B(eof)
self-dual CAR algebra with B(f) = erzf+(x) a’ + f(x)as, f = (fr,f-) € £2(Z) @ 1?>(Z) [AT1]
with 1-particle Hamiltonians

h=(Cos{—AN)®o3z3—~sSinNE®or, hg=h—v=h, ®&hPhpg
Fourier variable £ , V (self-dual) 2nd quantization of v
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Non-equilibrium properties
6.5 EXistence and uniqueness of NESS

Theorem
Let B;,6r € R, M € N. Then:

>4 (wo) = {wy}

Proof

o [A84] By, = Br = B: w4 unique (1,8)-KMS, RTE

o [KB] 1lae(h) =1, v e £9: w* =s—Ilim etho e~ith exists, complete
o ||B(H)| <IIfll, norm convergence

o T (B(£)) = B(e "™M0e"™ f) = B(w* f) =74 (B(f)) = wp =wpo4
O]
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6.6 2-point operator T of wy

Theorem
w4 has 2-point function wy (B*(f)B(g)) = (f,T4+g)

T, =1+t kL =(8+dsignv_)h
v— asymptotic velocity (in past), 8= (Br+ 61)/2, 6 = (Br — Br,)/2

Proof
o wy =wpovy = T4 = w_Tow™
e partial wave operators wy, asymptotic projections P,
Ja: 02(Z) @ C? — (?(Zs) ® C?, oo = L, R: canonical projections
ith .x - _—ith

w: =s—lim etha; e~th  p —s_|ime o€
Q J ; Jad
t——00 t——00

[IKB], [DS] existence,completeness of P,, w* = ZQE{LR} Jrwr,
hoéwz:wzéh, Pa:wawz, PL‘I‘PR:I, [Pa,h]:O

24



o from Tp = (14 eF0)~1 with kg =8, h; $0® Brhp

T, =1+ kL =8r+8(Pr—Pp)h

e since 1ac(h) =1 @@= —i0e ® 1, 2 = e thapeith)
: : x
Pr — P;, = s—limsign —t

t—00

e solve x; = py: S—Iimt_m% = ph (= ph/h2 with p= —i[h,z] =p-0, h=h-0)

v = s-res-lim -t = ph, Pr— Pr =signv_

t—oo ¢

Remarks

e since ky = BrhPr® BrhPr NESS w4 describes mixture of two independent species:
left-movers from ran Pr carry (g, right-movers from ran P, carry 8B;, (cf. [ACF98])
e further properties: w4 is attractive, independent of M, translation invariant,
primary, modular, quasi-free, KMS iff g; = Bgr, singular w.r.t. wo,...

25



6.7 Entropy production
entropy production in wy € X4 (wp)

Ep(wy) = Brwp(Pr) + Brwi(PR)
&; = —i[H,H;], ®r = —i[H, Hr]: Heat fluxes Z;, Zr — 7

Theorem
B Dt df sh 5|h|
Ep(wy) = 4/ ch2(5|h|/2)+sh2(6lhl/2)
Ep(wy) > O |f BrL # PR

Proof explicit computation! O

Remark

[AJPP ip] non-equilibrium properties for general quasi-free systems
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7. Application of the spectral approach: Spin-Fermion model

e finite quantum system S (spin): (Og,7s) (cf. 1.9.1)

e reservoirs R, (r=L,R): (Or,7) (cf. 1.9.2)

e Vi =¢p(ap)®QL®1, VR=10Qr®¢p(agr), V=V, + Vg

Segal field operator ¢ quantizing (sufficiently regular) coupling functions «,, and Q, € L(Hs)
e initial state w = w;, ®wg ® wr  ws trace state, w, (7, 5,)-KMS

lowest order entropy production [JP02]

Ep(w}) = Xo(pg) + O(N3)
—0(po) = Brwp(KrLHg) + Brwpy(KrHg)

spectral theory of C-Liouvillean: resonances from complex translation; o(po) entropy production in

van Hove weak coupling limit: Ky, Kr Davies generators, w,,(-) = tr(po-), ker(Kr 4+ Kgr) = {po}

strict positivity of entropy production [AS ip] small, good coupling [LS78]

{Hs,Qr} =C1 == o(pg) >0 == Ep(w}) >0

Examples Hs = C2, single spin; Hs = C*, XY
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8. Outlook

correlation functions: long range out of equilibrium 7
integrability, conserved charges, and Fourier law ?
Gallavotti-Cohen symmetry of entropy production 7
non-equilibrium phase transitions ?

etc....
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