A Short Introduction to the Mathematical
Theory of Nonequilibrium Quantum Statistical
Mechanics

Walter H. Aschbacher

Technische Universitat Munchen, Zentrum Mathematik, Germany



Part 1: General Theory

Contents

Basic concepts of C*-algebraic quantum statistical mechanics
NESS: Nonequilibrium steady states

The “scattering approach” to NESS

The ‘“spectral approach” to NESS

Entropy production

O s



1. C'*-algebraic quantum statistical mechanics
[Bratteli-Robinson], [Jak3i¢-Pillet 02], [A-Jak3i¢-Pautrat-Pillet 06],...

1.1 C*-dynamical systems (O, 1)

e Observables
(unital) C*-algebra O

Banach x-algebra (complete w.r.t. submultiplicative norm || - ||, involution x) with ||[A*A| = ||A||?
e dynamics

strongly continuous group 7! of x-automorphisms of O

R >t~ 7i(A) € O continuous w.r.t ||-|| forall Ae O

Example L(H) with ||A|| = supy|=1 |A%| and 7¢(A) = e Ae " and H* = H € L(H)



1.2 States w

o we OF

continuous linear functional on O with w(1) = 1 (normalized) and
w(A*A) > 0 (positive)

e £(0)

set of states

convex weak*-compact subset of O* with neighborhood base Uy, (w) = {w" |w'(A;) —w(A;)| < €}

e (7,3)-KMS state
(O,7) C*-dynamical system, 8 > 0.

w(ATB(B)) = w(BA)

A, B € D norm dense, T-invariant x-subalgebra of O, “entire analytic elements for 7" :
Ac O, < R>t— 7(A) extends to an entire analytic function

interpretation: systems in thermal equilibrium at temperature 1/3

Example (i.g. formal) Gibbs state w(A) = tr(e P7A)/Z (e.g. finite system, Fermi: unique)



1.3 GNS representation [Gelfand-Naimark-Segal]

e wc £(O). exists unique cyclic representation (Hy, 7w, Qw) of O s.t.
w(A) = (Qu, 7w (A)20w)

T . O — L(Hy) *-morphism:

(A + BB) = an,(A) + Bru(B), mw(AB) = m,(A)7,(B), mw(A*) = n,(A)*

Q, cyclic: {m,(A)Qu| A € O} dense in H,

uniqueness up to unitary equivalence: Un,(A)Q2, = n,,(A)S2,

H.: positive semidefinite (A, B) := w(A*B), left ideal Z, := {A € O|w(A*A) = 0}, equivalence classes
[A] .= {A+TI|I € 1,}, scalar product ([A], [B]) := (A, B)

mw(a)[B] := [AB]
Q. = [1]

e n € £(O) w-normal & exists density matrix p € L(Qu):
n(A) =tr(pmw(A))

N, set of all w-normal states



1.4 (Concrete) von Neumann algebra
e commutant
‘H Hilbert space, M C L(H).
M ={Aec L(H)| [A,M] =0, M € M}

MC M =M =MD = and M' = M" = M = M0 =

e von Neumann algebra over H
M= M
Examples L(H); not L>*(H) since L*(H) = C1
M von Neumann algebra over H, Q € H, MQ :={AQ| A € M}

o QcH cyclic :& MQ=H
o (2 € 'H separating = Qe kerA=A=0



1.5 Tomita-Takesaki theory

e M von Neumann algebra over 'H, €2 € 'H cyclic and separating
e transfer x-involution on M to dense subspace M2 of H:
0. M — ./\/lQ, A— AS2 0 injective (2 separating), M dense (L2 cyclic)

-1
M L2 MmQ
So i MQ — MQ, SgAQ = A™Q * | 1 So
M LMo
e modular conjugation J, modular operator A associated with (M, 2)

S = JAl/?2
polar decomposition of closure S := Sy, J unique anti_unitary, A unique positive selfadjoint
e [Tomita-Takesaki] JMJ = M’ and A"MA~t = M
e here: M = My 1= 7,(0)" C L(Hy).
e wc £(O) modular ;< Q is separating for M,

Example (7,B8)-KMS state (Schwarz reflection principle, reformulation of KMS conditions)



1.6 Standard Liouvillean

(O, 1) C*-dynamical system, w € £(O) modular.

= exXists unique self-adjoint standard Liouvillean L on ‘H, S.t.
mu(ti(A)) = ety (A)e M, eTtEp P

natural cone P = {AJAQ, | A € M}
n € N, and r-invariant = exists unique €, € ker LN P s.t. n(A) = (2, 7 (A)2,)

1.7 Quantum statistical mechanics and modular theory

e ker L = {0} = no w-normal r-invariant states
e Quantum Koopmanism: spec L encodes some ergodic properties

Example limy_.n(7'(A)) = w(A) for all n € N, and all A € O "returns to equilibrium (RTE)"

< spec L is absolutely continuous up to simple eigenvalue O

o A, = efw, [Takesaki] w is (7,8)-KMS < L, = —3L



1.8 Local perturbations

(O, 7)) C*-dynamical system.
e local perturbation V=V*ec O

e generator &y of perturbed dynamics 7! := e from 7§ = %
6(A) 1= d0(A) +i[V, A
generators dg,d: x-derivation of O: §(A*) = 6(A)*, 6(AB) = 6(A)B + AS(B), A, B € D(9)

e Dyson series
¢ _t [t t tn-1 tn t1 ¢
7'(A) = 15(A)+ ZI . dtq . dts ... A dtn [1g"(V), [...[7g" (V), 0 (A)]...]]
n>1
e (O,7) is C*-dynamical system

e w Modular. standard Liouvillean for perturbed dynamics
Ly =L+V —-JVJ

dom(Ly) = dom(L) and L standard Liouvillean for =



1.9 Examples

Finite quantum systems
e C*-dynamical systems (O,7), (0,7v) H=CVN, O = L(H), H=H*

Tt(A) — eitHAe—itH
e State p density matrix on H, any w € £(0O) of the form
w(A) =tr(pA)

Example unique (1, 8)-KMS state, 3 > 0: p = e PH /tr(e 8H)
e GNS representation Aj > 0 eigenvalues and zpj eigenvectors of p

Ho=HOH, m(A)=401 Q=3 /el
J

e Modular structure
JYpR¢)=¢®¢Y, L,=10gA,=10gpR1—1xIlogp

e Standard Liouvillean

L=H®X1-1®QH
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Free Fermi gas
e C*-dynamical system(O,7) l-Fermion: Hilbert space ), Hamiltonian A

Examples free non-relativistic spinless electron of mass m: §h = L?(R3),1?(Z3), h = —%A

Fock space §(h), bounded annihilation, creation operators a(f),a*(f)
O = CAR(H) generated by af(f), f € §

Tt(A) — oitdl(h) go—itdl (k)
dI second quantization of h, and 7t(af(f)) = af(e"f)

e Quasifree, gauge-invariant state T* =T € L(h), 0<T <1

w(a*(f1)..a*(fn)alg1)-.algm)) = dmn det |(g;, Tf;)]
completely determined by 2-point function

w(a*(f)alg)) = (g,Tf)

Examples T = F(h): Fermi gas with energy density F(E), e.g., T = (1+¢e°*)~1: unique (7, 3)-KMS
state, cf. XY (Pfaffian for self-dual CAR, cf. XY)
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e GNS representation [Araki-Wyss 63] N number operator, €2 Fock vacuum

§(h) 35(h), Qu=0®Q,
a((1-7T)2) @1+ ()N @ a*(TY2])

Ho
mw(a(f))

e Modular structure

J(p ® )
Lo

UpoUp, U= (—1)NWN-1)/2
log A, =dlM(S) ®1—-1dr(s), S=logT(1-T)"1

e Standard Liouvillean

L=dlN(h)®1-1@dr(h)

Lattice spin systems
cf. 6.
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2. Nonequilibrium steady states (NESS) [Rruelle 00]
(O, 19) C*-dynamical system, wg € £(0O), V local perturbation.

1 /T
> 1 (wp) := weak*-lim pt {? /0 dt wgot!, T > O}

e Non-empty, weak*-compact subset of the weak*-compact set of
states £(O) (O unital) containing r-invariant NESS
oo
e Abelian averaging: Iim€_>0+e/0 dte “wgort
useful for spectral deformation
e [A-Jaksic-Pautrat-Pillet 06] wg factor, weak asymptotic abelianness in
mean. n ¢ NWO = Z_|_(77) — Z—I—(WO)
Mo MM, = C1, and limr_oc % [ dén([r'(A), B]) =0 for all A,B € O and all n € N,

e structural properties of NESS, spectral characterization...

Example wp modular, ker Ly contains separating vector for My, = X4 (wo) C Ny
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The response of the system to a local perturbation depends strongly
on the nature of the initial state wy.

System near equilibrium:
wo is (1, 8)-KMS, n € Ny,. expect

1lim n(r'(4)) = w(A) where w is (7, 8) — KMS

e ergodic problem reduces to spectral analysis of Liouvillean Ly,
e conceptually clear, spectral analysis done for few systems only

System far from equilibrium:

wo IS not normal w.r.t. some KMS state

e conceptual framework not well understood, the following two ap-
proaches to the construction of NESS are used (rigorous literature):

the scattering approach, and the spectral approach
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3. The scattering approach to NESS [Rruelle 00]

e Mdgller morphism (O, mg) C*-dynamical system, V local perturbation.

= lim 7~ to 7!
,Y+ t—o0

algebraic analog of Hilbert space wave operator 24 = s — lim;— eltHe=itHo1 \ (Hp)

NESS wqg mo-invariant. = W4 = wQ o4 € Z—I—(WO)

Example wq is (70,8)-KMS = w4 is (7, 8)-KMS
e algebraic Cook criterion for the existence of v

|7 dt vt ] < o

A in dense subset of O, and |f(z) — f(y)| = \fjdtf/(m < fjdt|ff(t)| — 0 for f' € LY(R)

difficult to verify in physically interesting models

Examples [A-Pillet 03], [A-Jaksic-Pautrat-Pillet 07] reduction to 1-particle Hilbert space scattering
problem for quasifree systems; [Botvich-Malyshev 83] locally perturbed Fermi gas
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4. The spectral approach to NESS [Jaksic-Pillet 02]

ker Ly, provides information about wg-normal, 7-invariant states; but
thermodynamically interesting NESS not in N, !

usual approach: scattering theory

C-Liouvillean L*
(O, 1m9) C*-dynamical system, wg modular, mg-invariant,
V local perturbation. assumptions about analytic continuation of Al' VAZ!, etc.

L"=L+V-—JAa"12yal/2g
implements perturbed time evolution 7t(A) = etk Ae-itL" and Qu, € ker L

(Abelian) NESS are weak* limit points of ewj. for ¢ — 0T, where

wo(A) = i/ooo dt 7t wo(rt(A)) = (g, ALL* — 2)"12,,)

= NESS described by resonance of L™ !
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5. Entropy production [Jaksic-Pillet 02]

(O,m9) C*-dynamical system, wg mg-invariant, V local perturbation,
C*-dynamics og with generator g s.t. wg is (og, —1)-KMS.

mean entropy production rate in NESS wy € ¥4 (w)
Ep (wt) := w4 (00(V))

Example [Open system] small system S coupled to extended thermal reservoirs Ry:
wo = ®pwr, wi IS (T, Br)-KMS, o = @7, ™, 6o ==, By
= Ep(wy) = — ), Bedr With ¢ 1= wy (6,(V)) heat flux leaving S

e entropy production as asymptotic rate of decrease of relative entropy
[ dt wo o (80(V)) = Ent(wolwo) — Ent(wo o 77|wo)

e Ep(wy) >0

® wi wo-normal = Ep(wy) =0

equivalence under weak ergodicity condition
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6. Application of the scattering approach: XY model

e “integrable” models as essential tools in development of equilibrium
statistical mechanics - out of equilibrium: dynamics crucial

e XY model one of few systems for which explicit knowledge of dy-
namics available: "integrable”

due to Jordan-Wigner transformation = free fermions

e integrability may be traced back to infinite family of charges

master symmetries [Barouch-Fuchssteiner 85], [Araki 90]

e integrability relates to anomalous transport:

theory: overlap of current with charges prevents current-current cor-
relation to decay to zero = "ideal thermal conductivity”

numerics: Fourier law violated for “integrable” systems
experiment: anomalous transport properties in low-dimensional mag-
netic systems, e.g. Heisenberg spin models
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e one of the best physical realizations of 1d,S = 1/2 XYZ Heisenberg
model: interchain/intrachain interaction: ~ 107> (PrClsz: XY)

e [Sologubenko et al. 00] anomalously enhanced conductivity along chain

electric insulator; T high: spinons > phonons, limited by defects & phonons
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XY chain

infinite chain of spins interacting anisotropically with two nearest
neighbors and with external magnetic field: v € (=1,1), A€ R

1 x T T x x
H = - > ((1 + ’y)(fg )Ug 4 (1- ’y)aé )O'é +) 4 2)\0:(3 ))

TrEL

6.1 Nonequilibrium setting [A-pPillet 03]

remove bonds at the two sites £M
= 3 decoupled subsystems with (77,81), (rs,0), (7R, Bp)-KMS states

wo = ng R wg ®w6RR

infinite half-chains Z;, Zgr play role of thermal reservoirs to which
finite subsystem Zg is attached via coupling V = H — Hg
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6.2 Observables

quasi-local C*-algebra & over Z

HA = Q) Hizys  Ga = L(HA)
T =TAY
associate Hilbert space Hy,, = C? to = € Z, finite subset A of Z

infinite tensor product of E(H{x}) for x in arbitrary subset Z of Z:

Gz= |J 6,
NCZ

observables as limits of polynomials in Pauli matrices a&x), a=20,1,2,3

Pauli matrices o9 = [ é ? ], o1 = [ Cl) é }, oo = [ O 61 }, o3 = [ é _Ol } generate/l(?—l{x})

1
and 6@ = .. 19100, 101 ---

=6z 6.=6_up OGs=6(_y<mp Sr=06on
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6.3 Dynamics

e local XY Hamiltonian Hp = Y xa P(X), interaction ® : X — Gx:

' i, X ={a},

0, otherwise

e thermodynamic limit of local perturbed dynamics:

T}f\(A) — eltnge=1tHA 71 — |im 7'}5\
N—7Z
exists since interaction short range, two-body = defines perturbed C*-dynamical system (&, 1)

e free dynamics from local perturbation
V=d({-M-1,—M})+D({M, M+1}) = defines free C*-dynamical system (&, 70)

CS=6;06s® 6p, 78:7175;@7‘%@7;3
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6.4 Jordan-Wigner transformation [Jordan-wigner 28], [Araki 84]

0(1) ce a(m_l) rx>1
o = TS (0@ _iolyja 5@ = { el 2]
ng) : --ago), r <1
CAR 2(h) with h = £2(Z): {as,ay} = 0 and {as,a}} = ., (T for two-sided chain)
e interaction becomes quadratic

f

—3X(2a%az — 1), X = {z}
P(X) = 4 %{a;aa}—l—l + a;k;_|_1a:r: + fy(a;a;+1 + a:c—l—laa:)}a X ={z,z+ 1}
0, otherwise

\

e dynamics become Bogoliubov automorphisms

T'(B(f)) = B('™f), 15(B(f)) = B(e'hof)

[Araki 71] self-dual CAR: B(f) = a*(f1) + a(f2) for f = (f1, f2) € h®?

e 1-particle Hamiltonians Fourier variable ¢ , V (self-dual) 2nd quantization of v

h=(cosé—AN)®oz+vysSinE®op, hg=h—v=h; ®Phsg®Dhpg
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6.5 Existence and uniqueness of NESS

Theorem
Let B;,8r >0, M € N. Then:

>4 (wo) = {wy}

Proof

o [Araki 84] B = Br = B: w4 unique (7,3)-KMS (RTE)

e [Kato-Birman] time dependent scattering theory for trace class type
perturbations: lac(h) =1, v e £°

= Wi(h, hg) = s—Ilimi_ 4o e e1th01,-(hg) exist and are complete

completeness: ran Wi (h, hg) = h@) (isometricity and intertwining)

1 (B(P) = Jim 75 (r/(B(f))) = Jim B(e Mhoelthf) = B(W* )

= w4 = wg o v4 quasifree NESS O
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6.6 NESS density

Theorem
w4 has 2-point function wy (B*(f)B(g)) = (f,T4+g) with density

Ty = (1 + e )1, ky = (B+dsignv_)h

v— asymptotic velocity, 8 = (Br + Br)/2 and § = (Bg — BL)/2

Proof

o wy =wgoy4y = Ty = W_TgW=

e partial wave operators wy, asymptotic projections P,
Ja: 02(Z) @ C? — 0?(Z,) ® C?, o« = L, R: canonical projections

* : itha : A—Iith _ : ith .x . L—ith

w, =S—Ilim e""*j, e : o =S—Ilime"" j,ja €
t——00 t——00

[Kato-Birman], [Davies-Simon] => existence and completeness of P,, and

WE =" I Wa, ha Wi =Wih, Pa=WoW, Po+Pr=1, [Pa,h] =0
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® W) quasifree with density Ty = (1 -+ e_ko)_l, ko = BL hL @0 @6RhR
Ty =1+t ky=06h+6(Pr—PL)h

= signv_

v_ = s-resdim_.o ¢/t strong resolvent sense, x = —i9; ® 1, x; = e "hgelth
e explicitely computable:

sighv_ = sign(2Asin€ — (1 —~2)sin 2¢)y/(cos ¢ — A)2 +~2sin2 ¢ @ og

Fourier variable &
[

Remarks
e since ky = BrhPr®BrhPr, NESS w4 describes mixture of two independent species:
"left-movers” from ran Pgr carry Bgr, " right-movers” from ran P; carry Gy,

e further properties: w4 is attractive, independent of M, translation invariant,
factor, modular, quasifree, KMS iff 8;, = Bgr, singular w.r.t. wg

Does wy have nontrivial thermodynamics in the sense that its entropy
production is strictly positive?
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6.7 Entropy production

entropy production in the open system:

Ep(wy) = Brwi(Pr) + Brwt(PR)
$b; = —i[H,H;], &g = —i[H, Hg]: heat fluxes Z;, Zr — Zg

Theorem
5 2w dé¢ sh 5/1
E — = By
Plwi) = /o 2n " ch2(Bu2) + sh 2 (ou/2)

k(€) =2p-h =2Asiné — (1 —~?)sin2¢ and p(¢) = \/(cosg — N2 4+ ~2sin?¢

> 0 iff B, # Bpr

Proof explicit computation! O

Remark
e first rigorous application of Ruelle’s scattering approach to a thermodynamically
nontrivial system
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7. Further applications

7.1 Quasifree fermionic systems [A-Jaksic-Pautrat-Pillet 07]

NESS interaction of trace class type, no singular continuous spectrum

initial state Té—invariant and quasifree with density oq:

w4 (dlM(c)) =tr(o4c) with o =W_ooW* + > 1c(h)eole(h)
e€opp(h)

Landauer-Buttiker formalism derives from Ruelle’'s approach:

o (@)= [ T treo()la(e) — 5 ()a()SED)

O'ac(ho) 27'('

= Landauer Buttiker formula
= entropy production
= Kinetic transport koefficients, Onsager relations

29



7.2 Weak coupling theory [aA-spohn 06]

Entropy production algebraic criterion which ensures strict positivity
in the weak coupling limit:

{Hs,Q;} =C1 = Ep(w})=X0(pg) + O(\*) >0

7.3 Correlations [aA-Barbaroux 06], [A 07]

Spatial spin-spin correlations decay rate out of equilibrium: spectral
condition on quasifree density implies exponential decay

break translation invariance [A in progress]

von Neumann entropy density asymptotic behavior: "left-movers”
and "right-movers”

7.4 More...
intermediate times, interacting systems, phase transitions, symme-

tries, fluctuations,...
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