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1. Motivation: The Hartree equation is ubiquitous

The nonlinear and nonlocal Hartree equation:

00, ) = [~ A+ o@) + [ dy Vie—p) [0 ] o(e.0) J

The ingredients are the following:
@ ¢ (z,t) is the wave function.
@ v(z) is the external potential.
@ V(z) is the interaction potential (two-body potential).

In which context does this equation appear?
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1.1 Bose-Einstein condensation (BEC)

Many body quantum systems: Effective regimes

The Hamiltonian for N (spinless) bosons reads

N

Hy = Z(*Ai) + ZVN(l'i — ).

=1 1<j

The following scalings are being studied:

@ Mean field scaling:
Vn(z) = N"'V(z)

@ Gross-Pitaevskii scaling:
Vn(z) = N°V(Nx)

Remark Frequent and weak vs. rare and strong

In the limit N — oo, the many body quantum system can be described by the
following effective regimes.
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Mean field regime

—> Hartree equation
The solution of the time dependent Schrédinger equation converges to the
solution of the Hartree equation, i.e., for N — oo, we have, in trace norm,

trn-1 Ple IV y®N] — Plyy].

[Spohn 80], [Erdés-Yau 01] (BBGKY?) ; [Hepp 74], [Ginibre-Velo 79], [Pickl 09]

4Bogoliubov-Born-Green-Kirkwood-Yvon

Gross-Pitaevskii (GP) regime
—> GP equation
10:(z,t) = (= A + v(x) + [ (=, 8)[* )i (a, t)
@ The ground state of Hx + v, Where vy is confining, converges to the GP
ground state. [Lieb et al. 00, 02]

© The solution of the time dependent Schrédinger equation converges to the
solution of the GP equation. [Erdés et al. 07,08]

v
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Experiments: 1995

@ A gas of ~ 10> —10° rubidium §7Rb, sodium ?3Na, or lithium ILi atoms is
initially confined in a magnetic trap of size ~ 10~*m and cooled down to
~ 107°K.

© By optical methods, a sharp peak is recorded in the velocity distribution of
the atoms released to free expansion after switching off the trap.
[Anderson et al. 95], [Davies et al. 95], [Bradley et al. 95]

— The minimizer of the
GP functional describes the
condensate in the trap.

— The time dependent
GP equation describes the
condensate after switching
[Anderson et al. 95] Off the trap.

L: temperature just above condensation
M: just after the appearance of the condensate
R: evaporation leaves a (nearly) pure condensate
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BEC: Extended scenarios

High density situations
@ Original BEC scenario: the gas is dilute and has repulsive interactions.

© For atiractive interactions, the system collapses as soon as the number of
condensate atoms exceeds a critical value ~ 103, [Bradley et al. 95, 97]

© The collapse has its mathematical manifestation in the nonexistence of a
minimizer of the GP functional,

Eap[Y] == T[] -9gGP[Y], J
where g > 0, and we define the kinetic and the GP energy by

T[] = 4|V,
GP[y] = |95

Namely, using the scaling ¥ (z) := X\3/24(\z), we have, for A — oo,

Eap[a] = NX°T[Y] — gA’GP[y] — —oo.
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BEC: Extended scenarios

© Even close to collapse, the condensate is significantly affected by
mechanisms not included in GP theory: important are

o the internal structure of the bosons,
@ ionization and recombination processes,
o the interaction with the electromagnetic field.

@ Replacing the GP energy by the Hartree energy,
H[Y) = (%, V[y’y), J

amounts to replacing the GP scaling by the mean field scaling, and:
e It accounts for a less coarse-grained resolution of the boson-boson interaction.
e The existence of a minimizer is always assured (even without a trap).
@ It continues to be mathematically meaningful as the collapse point is
approached (and even beyond).
e It may be expected to give a qualitative account of the onset of the collapse.

@ These considerations also apply to the case of repulsive interaction if the
density becomes high.

From Bose-Einstein Condensation to Monster Waves: The Nonlinear Hartree Equation, and some of its Large Coupling Phenomena



Motivation . 0 9
Bose-Einstein condensation

Monster waves
Further applications

BEC: Extended scenarios

Interacting condensates

@ ltis experimentally possible to create several different condensates in the
same trap repelling each other. [Myatt et al. 96], [Hall et al. 98], [Stenger et al. 98]

©@ Two interacting condensates, possibly made of different atomic species

(e.g. §TRb and 33K), are described by

101 (2,1) = (=A + 01(2) + g1 lvhr(,1)|* + k|2 (2, 1)]?) ¢ (2, 1)
102 (x,t) = (—A + va(x) + gola(x, t)]* + Kl (x, 1)) a(, 1)
© For the same reasons as described in the single condensate case, we

may replace the local GP energy by the nonlocal Hartree energy,

R J
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1.2 Monster waves

@ The estimated loss of carriers of length > 200m is around 10/year. A
prominent case is the complete disappearance of the LASH-carrier
Miinchen in 1978 (261m). [Schmitz-Eggen 02]

@ Reported waves suddenly reach heights ~ 30m.
@ The first measurement was done on the Draupner-E platform in 1995.

@ EU project MaxWave involved the satellites ERS-1/2: such waves were
discovered to be frequent!
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Monster waves

Theoretical approaches

@ Different models have been proposed. The linear models all suffered from
one or several of the following problems:
@ The predicted frequencies are far too small compared with the satellite data.
e The speed of the build-up and the reachable height are not big enough.
e The stability is very short-lived (dispersion).
© Due to many cross-sea accidents, approximate models, derived from the
Navier-Stokes equation, lead to coupled nonlinear Schrédinger equations
for the wave envelopes. [Onorato et al. 06], [Shukla et al. 06]
© The theoretical and numerical predictions based on this model are in good
agreement with the observed data.

© Derivation from Euler equation using multiscale analysis. [A-Giannoulis]
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1.3 Further applications

Miscellanea

@ Newtonian point particle limit
For shallow external potentials v(ex), and for superpositions of minimizers

Uot) i= 3 B o = ()™ "0 + ofc), J

the Euler-Lagrange equation w.r.t. r; of the corresponding action
functional leads to Newtons equation of motion,

Folt) = —eVuler) + 5 30 Ny VVile(ri(t) = 1(8) + o(e) J

J#i

It describes the motion of extended particle in shallow external potential
weakly interacting with a dispersive environment (= Newtonian gravity).

©@ Nonlinear optics
© Plasma physics
© Material sciences ...
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Large coupling phenomena

We will discuss two time independent large coupling phenomena.

Symmetry breaking [A et al. 02]

@ Consider the Hartree equation with an attractive Coulomb
two-body interaction, and let the external potential have a given
symmetry.

Then, any ground state exhibits spontaneous symmetry breaking in the
large coupling regime.

v
Phase segregation [A-Squassina 09]

@ Consider a system of two coupled Hartree equations with
repulsive Coulomb two-body interactions, and let the external
potentials be confining.

Then, any system ground state undergoes phase segregation in the
large interspecies coupling regime.

.
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2.1 Symmetry breaking: Functional setting

Definition: The function space

H'(R®) = {y € L*[R") | |V¥] < oo}

Definition: The Hartree functional

Let v € C,(R3,R), set V(z) := |z|~', and let g > 0. The functionals
Ey, Eu,q : H(R?) — R are defined by

Eg[] = T[] —gH[Y],
Eug[] = Eg[¥] + v,
where the kinetic, the external, and the Hartree energy are defined by
[0] = 311Vl
[v]

| N

T

AY

\

Remark |H[¢]| < C||¢||3||V¥|| by Hardy-Littlewood-Sobolev, Gagliardo-Nirenberg.
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2.2 Existence theory

Proposition: Existence of a minimizer

Let the external potential v : R* — R satisfy one of the following assumptions.
@ It vanishes.

Q ltis alocalized trap, i.e. v € L¥?(R®) 4+ L>=(R?) satisfies v < 0 with
v # 0, and v(z) — 0 for |z| — oo.

@ ltis a confining trap, i.e. v € Li,.(R®) satisfies v > 0 and v(z) — oo for

Then, there exists a Hartree minimizer.

Proof. The direct method in the calculus of variations leads to the assertion
(and e.g. the concentration compactness principle [Lions 84] for (1) and (2)). O

Remarks

@ Note that, if v € LP(R3) + L9(R3) with 2 < p, ¢ < co satisfies v > 0 and v 3 0, no
minimizer exists. [Lions 84]

@ For short range two-body potentials V' (e.g. of van der Waals type) and no trap,
Birman-Schwinger theory implies the existence of a minimizer for sufficiently large
couplings only (e.g. CLR bounds).
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2.3 Theorem

Theorem: Symmetry breaking [A et al. 02]

Assume that
Q@ veE Cb(RS,R),
@ G € E(3) is s.t. any minimizing sequence z,, € R? of v satisfies the
gap condition

liminf |G(x,) — zn| > 0. J

n— oo

Then, for sufficiently large g > 0, any minimizer ® of the Hartree functional
exhibits spontaneous symmetry breaking,

[®oGI* # |, J

Remarks

@ [f the infimum of v is attained on its set M, of minima, then the gap condition reads
infzen, |G(x) — x| > 0.

@ This theorem implies the symmetry breaking formulated earlier: if v o G = v for
some G satisfying the gap condition, then the minimizer breaks the symmetry of v.
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Examples and proof strategy

Examples: External potential

@ Double well
@ Mexican hat
© Periodic potential

© For a single well, the gap condition is not satisfied for any G € E(3) which
is a symmetry of v.

The proof will be carried out in three steps:
@ Any approximate free minimizer is arbitrarily strongly concentrated.

@ Any minimizer is an approximate free minimizer, and it is localized around
the minima of the external potential.

© Any invariant minimizer violates mass conservation.
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Step1: Any approximate free minimizer is arbitrarily strongly

concentrated.

Definition: Mass, free ground state energy, and approximate free minimizers
For any subset Q C R?® and any « € L*(R?), we define
Noft] = 932 |

and N[¢)] := Ngs[¢p]. For0 < n < 1 and g > 0, the free ground state energy
and the set of approximate free minimizers are defined by

B, := inf{&[y]| v € H'(R*) and N[¢] = 1},
Mén) = {¢ € H'(R®) |N[¢] = 1and &,[v] < (1 —n)E,}. J

Lemma 1: Concentration

Let 0 < § < 1. Then, there exist 770 > 0, go > 0, and 7o € R?, s.t., for all
¥ e M with n < no and g > go, we have

NBE(’HO)[w] >1-0. J
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Proof.
@ We introduce a partition of unity: Let y € C§°(R?) satisfy

o suppx C B1(0),
e 0<x<1,
o [Ixll=1.

Moreover, for any y € R® and any 0 < § < 1, we define
° Xy.é(w) = X(%L
@ j,5(x):= 6’3/2)(%5(90).

We then have the following:

e (Overlap) For any 0 < v < 1, there exists € > 0 s.t., for all z, 2’ € R3 with
|z — 2’| <&,

Y -y x*@ —y) >1—7.

o (Partition of unity) For any 0 < § < 1, we have, for all = € R3,

/Ra dy 2 5(a) = 1.

@ (IMS localization) For any 0 < § < 1, we have, with p := —iV,

P’ :/ Ay jy.5 P2dy,s —/ dy (Viy,s)%
R3 R3
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Let 0 < § < 1 be fixed.
© Using IMS localization, we have

TW] = 5% /]1&3 dy T[xy,s%] — %T[X]'

© Let 0 < v < 1. Then, using the overlap property, there exists an ¢ > 0 s.t.,
integrating over the ball of radius £§ and its complement, we get

I p—

‘ 1
< gﬁ/ﬂ@ dy Hlxy,s¢] + =5

@ Using the scaling S(a, 8)i(x) := a®/28%p(aBz) with a, 8 > 0, we get, for
any nonvanishing ¢ € H'(R?),

Easlie] = *[l@]°EalS (™", el 7).
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@ Plugging (2), (3), and (4) into the functional, we get the lower bound
& = T - gH[Y]

1 1 g
55 /RS dy 5% [Xy, 5] — ET[X] %

\Y]

1 6 —2 1 g
= ST / L4y x| 1S — 7 xuatllxw.st] =55 TIX] = 25

> Bg=g2F
@ Next, we do the following:
o We use the assumption 1) € M7 i.e. £5[¢] < (1 —n)Ey = g2(1 — n)Ex,
e we divide the inequality by g?E; < 0,
o we use ||xy,s%|* < Nfgé(y)[w]-
Then, we find

1 1 g
l-n< o7— N T = .
1< e s N ls] [ ol + o (700 + 5)
—_——
— 43

This concludes the proof of Lemma 1. d
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Step 2: Any minimizer is an approximate free minimizer, and it is

localized around the minima of the external potential.

Definition: Ground state energy and minimizers

Let v € Cy(R* R) and g > 0. The ground state energy and the set of
minimizers are defined by

B, 4 = inf{& 4[] | ¢ € H'(R®) and N[¢] = 1},
M.y = {y € H'(R®) IN[] = 1and &, 4[¢)] = Eu g} J

v
Lemma 2: Localization

Letv € Cy(R3* R), 0 < 6 < 1,and £ > 0. Then, there exist . € R and g. > 0
s.t. any ® € M, 4 with g > g.,
@ is an approximate free minimizer satisfying

NB&(’U*)[(I)} >1-4, J
@ and is localized around the minima of the potential,
inf z) < inf v(z) +e.
meg;(y*> v(z) < Ilél_ﬂ v(z) J
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Proof.

@ Pick ® € M, 4 and any oy € H'(R?) with N[¢)] = 1. Then, using

0 02> Eug[®] = Evg[h] = E[P] — EG[Y] + v[P] — v[Y],
o [V[®] = v[¢]| < 2f|v]leo,

we can bound the free energy of the minimizer by

2||v|\oo>
E [P < Ey(1-— .
Q[ }7 9( g‘2|E1‘

© To prove the 2nd part, we set v, := inf,cps v(z).
e We note that, for any € > 0, there exist y; € R? and §; > 0 s.t., for all
z € Bs, (y1), we have v(z) < v, +¢/2 since v € C(R3,R).
@ Moreover, we assume that

inf  w(z) > v« +e.
z€Bs(yx)

From Bose-Einstein Condensation to Monster Waves: The Nonlinear Hartree Equation, and some of its Large Coupling Phenomena



Functional setting
Symmetry breaking Existence theory
Theorem

Remarks

© We define the translated minimizer ®'(z) := ®(z — (y1 — y«)), and we

show that ®’ has strictly lower energy than ®. Since
] NB(;(yl)[(D/] = NB5(y*)[(I>] >1—-4and N]R3\B5(y1)[cbl] <4,
we have, on one hand,

13
V@] — v, <5+ —villo Nioypy, ) [@] -
N—_————/—
<4,if6=0(e) < &1
On the other hand, using the assumption, we get

V[®] —v. > Npju)[®]  —I[lv = vslloo Nrs\p;(y.)[P]-
N —— N——
> 1-4, by 1st part < 4, by 1st part

© Hence, plugging these bounds into the energy difference, we get
Eug[®] = Eug[®] = v[®]—v. — (V[®] —v.)
g
< —(5-dE+2lv—vl)),

and the r.h.s. is strictly negative if ¢ is sufficiently small.
This concludes the proof of Lemma 2. a
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Step 3: Any invariant minimizer violates mass conservation.

Proof of the Theorem.

@ The gap condition implies that, for ¢ > 0 sufficiently small, there exists
0 < 4§ < 1/2s.4., for any 2 € R? satisfying v(z) < v. + 2¢, it holds
|G(x) — x| > 46.

@ It follows from the 2nd part of Lemma 2 that, for any €, § > 0, there exists
Zo € Bs(ys) s.t. v(zo) < v. + 2¢. Hence, we have

|G (y=) = y«| = |G(w0) — wo| = |G(yx) — G(z0) + y« — 0| > 26

> 44, by (1) <2|zo—yx|<26

Q Letd € M, 4 with g > g., and assume that ® o G = &. Then, since

N, (G(y.)[®] = Np;(y.)[®] > 1 — 6 due to the 1st part of Lemma 2, we
get a contradiction,

N[®] > Np;.)[®]+ Nb,cw.)[®]
> 2(1-6)>1.
This cocludes the proof of the Theorem. d
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2.4 Remarks

Theorem: Uniqueness [A et al. 02]

@ The minimizer is unique for sufficiently small coupling.
@ Symmetry breaking occurs above a strictly positive critical coupling only.

Size of critical coupling: Numerics [A et al. 02]

@ v is a double well composed of (cosh |z|)~*-type wells.
@ Numerical analysis (FE) of nonlinear iteration procedures [A 02,09].

Liss
Of-§-J-
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3. Phase segregation

Definition: The function space

Let v1,v2 € C(R3,RY) be confining, and define
H o= {[th1, 2] € H' (R*)*? | (i, vithi) < 00, i = 1,2}, J

Definition: The Hartree functional

Fori=1,2,let g; > 0 and x > 0, and define the Hartree system functional
Ex:H — Rby

| \

Eulton, ol i= S (TRbi] + viltbil-+g:H [ ]) +#H[, o], J

1=1

where the interspecies Hartree energy (direct term) is given by

Hv1, ] i= (1, V * [tho] ") )
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Theorem: Phase segregation [A-Squassina 09]

@ For any « > 0, there exists a system minimizer [®F, ®5].

© Any sequence of system minimizers features phase segregation in the
large interspecies coupling limit, i.e. for k — oo, we have

H[®F, @5] = o(x ). J

Remark Different types of spatial separation exhibited by BE condensates are
distinguished by their dynamical behavior after (adiabatically) switching off the confining
potentials [Timmermans 98]:

@ Potential separation: diffusion into each other
@ Phase separation: persists in the absence of external potentials
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4. Outlook

Directions (proposed or in progress)
@ (BEC) Dynamical potential/phase separation.
@ (BEC) More general interacting systems (BEC triplet states).
© (Magnetic fields) Existence of system minimizers.

© (Monster waves) Derivation of the system of coupled nonlinear
Schrédinger equations from Navier-Stokes equation. [A-Giannoulis]

@ (Newtonian limit) Soliton dissipation phenomena: return to equilibrium [A],
coalescence, structure formation, ...

Q Many more ...
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Thank you for your attention! )

Katsushika Hokusai The great wave off Kanagawa (woodcut, ~1830)
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