From Bose-Einstein Condensation to Monster Waves: The Nonlinear Hartree Equation, and some of its Large Coupling Phenomena



Walter H. Aschbacher (Ecole Polytechnique/TU München)

Model Equations in Bose-Einstein Condensation and Related Topics Kyoto, December 2010

## Contents

#### 1. Motivation

- 1.1 Bose-Einstein condensation
- 1.2 Monster waves
- 1.3 Further applications

## 2. Symmetry breaking

- 2.1 Functional setting
- 2.2 Existence theory
- 2.3 Theorem
- 2.4 Remarks
- 3. Phase segregation

## 4. Outlook

Bose-Einstein condensation Monster waves Further applications

## 1. Motivation: The Hartree equation is ubiquitous

#### Definition

The nonlinear and nonlocal Hartree equation:

$$\mathrm{i}\partial_t\psi(x,t) = \Big[-\Delta + v(x) + \int\mathrm{d}y\;V(x-y)\left|\psi(y,t)
ight|^2\Big]\psi(x,t)$$

The ingredients are the following:

- $\psi(x,t)$  is the wave function.
- v(x) is the external potential.
- V(x) is the interaction potential (two-body potential).

## In which context does this equation appear?

Bose-Einstein condensation Monster waves Further applications

# 1.1 Bose-Einstein condensation (BEC)

Many body quantum systems: Effective regimes

The Hamiltonian for N (spinless) bosons reads

$$H_N = \sum_{i=1}^{N} (-\Delta_i) + \sum_{i < j} V_N(x_i - x_j).$$

The following scalings are being studied:

- Mean field scaling:  $V_N(x) = N^{-1}V(x)$
- Gross-Pitaevskii scaling:  $V_N(x) = N^2 V(Nx)$

Remark Frequent and weak vs. rare and strong

In the limit  $N \to \infty$ , the many body quantum system can be described by the following effective regimes.

**Bose-Einstein condensation** Monster waves Further applications

## BEC

## Mean field regime

#### Hartree equation $\implies$

The solution of the time dependent Schrödinger equation converges to the solution of the Hartree equation, i.e., for  $N \to \infty$ , we have, in trace norm,

$$\operatorname{tr}_{N-1} P\left[\mathrm{e}^{-\mathrm{i}tH_N}\psi^{\otimes N}\right] \to P[\psi_t].$$

[Spohn 80], [Erdős-Yau 01] (BBGKY<sup>a</sup>) ; [Hepp 74], [Ginibre-Velo 79], [Pickl 09]

<sup>a</sup>Bogoliubov-Born-Green-Kirkwood-Yvon

#### Gross-Pitaevskii (GP) regime

GP equation

$$i\partial_t \psi(x,t) = (-\Delta + v(x) + |\psi(x,t)|^2)\psi(x,t)$$



The ground state of  $H_N + v_N$ , where  $v_N$  is confining, converges to the GP ground state. [Lieb et al. 00, 02]

2 The solution of the time dependent Schrödinger equation converges to the solution of the GP equation. [Erdős et al. 07,08]

Bose-Einstein condensation Monster waves Further applications

### Experiments: 1995

BEC

- A gas of  $\sim 10^3 10^6$  rubidium  $^{87}_{37}$ Rb, sodium  $^{23}_{11}$ Na, or lithium  $^{7}_{3}$ Li atoms is initially confined in a magnetic trap of size  $\sim 10^{-4}m$  and cooled down to  $\sim 10^{-6}K$ .
- By optical methods, a sharp peak is recorded in the velocity distribution of the atoms released to free expansion after switching off the trap. [Anderson et al. 95], [Davies et al. 95], [Bradley et al. 95]



[Anderson et al. 95] L: temperature just above condensation M: just after the appearance of the condensate R: evaporation leaves a (nearly) pure condensate

Symmetry breaking Phase segregation Outlook Bose-Einstein condensation Monster waves Further applications

# **BEC: Extended scenarios**

### High density situations

- Original BEC scenario: the gas is dilute and has repulsive interactions.
- <sup>(2)</sup> For attractive interactions, the system collapses as soon as the number of condensate atoms exceeds a critical value  $\sim 10^3$ . [Bradley *et al.* 95, 97]
- The collapse has its mathematical manifestation in the nonexistence of a minimizer of the GP functional,

$$\mathcal{E}_{\rm GP}[\psi] := {\rm T}[\psi] - \underline{g} {\rm GP}[\psi],$$

where g > 0, and we define the kinetic and the GP energy by

 $T[\psi] := \frac{1}{2} \|\nabla \psi\|^2,$ GP[ $\psi$ ] :=  $\|\psi\|_4^4.$ 

Namely, using the scaling  $\psi_{\lambda}(x) := \lambda^{3/2} \psi(\lambda x)$ , we have, for  $\lambda \to \infty$ ,

$$\mathcal{E}_{\rm GP}[\psi_{\lambda}] = \lambda^2 T[\psi] - g \lambda^3 GP[\psi] \to -\infty$$

Symmetry breaking Phase segregation Outlook Bose-Einstein condensation Monster waves Further applications

## **BEC: Extended scenarios**

Even close to collapse, the condensate is significantly affected by mechanisms *not* included in GP theory: important are

- the internal structure of the bosons,
- ionization and recombination processes,
- the interaction with the electromagnetic field.

Replacing the GP energy by the Hartree energy,

 $\mathbf{H}[\psi] := (\psi, \mathbf{V} * |\psi|^2 \psi),$ 

amounts to replacing the GP scaling by the mean field scaling, and:

- It accounts for a less coarse-grained resolution of the boson-boson interaction.
- The existence of a minimizer is always assured (even without a trap).
- It continues to be mathematically meaningful as the collapse point is approached (and even beyond).
- It may be expected to give a qualitative account of the onset of the collapse.

These considerations also apply to the case of repulsive interaction if the density becomes high.

Symmetry breaking Phase segregation Outlook Bose-Einstein condensation Monster waves Further applications

## **BEC: Extended scenarios**

#### Interacting condensates

<

- It is experimentally possible to create several different condensates in the same trap repelling each other. [Myatt et al. 96], [Hall et al. 98], [Stenger et al. 98]
- We interacting condensates, possibly made of different atomic species (e.g. <sup>87</sup><sub>37</sub>Rb and <sup>39</sup><sub>19</sub>K), are described by

$$\begin{cases} i\partial_t \psi_1(x,t) = \left(-\Delta + v_1(x) + g_1 |\psi_1(x,t)|^2 + \kappa |\psi_2(x,t)|^2\right) \psi_1(x,t) \\ i\partial_t \psi_2(x,t) = \left(-\Delta + v_2(x) + g_2 |\psi_2(x,t)|^2 + \kappa |\psi_1(x,t)|^2\right) \psi_2(x,t) \end{cases}$$

For the same reasons as described in the single condensate case, we may replace the local GP energy by the nonlocal Hartree energy,

$$|\psi_i|^2 \psi_j \mapsto V * |\psi_i|^2 \psi_j.$$

Symmetry breaking Phase segregation Outlook Bose-Einstein condensation Monster waves Further applications

## 1.2 Monster waves

## Observations



- The estimated loss of carriers of length > 200m is around 10/year. A prominent case is the complete disappearance of the LASH-carrier München in 1978 (261m). [Schmitz-Eggen 02]
- Reported waves suddenly reach heights ~ 30m.
- The first measurement was done on the Draupner-E platform in 1995.
- EU project MaxWave involved the satellites ERS-1/2: such waves were discovered to be frequent!

Symmetry breaking Phase segregation Outlook Bose-Einstein condensation Monster waves Further applications

## Monster waves

## Theoretical approaches

- Different models have been proposed. The linear models all suffered from one or several of the following problems:
  - The predicted frequencies are far too small compared with the satellite data.
  - The speed of the build-up and the reachable height are not big enough.
  - The stability is very short-lived (dispersion).
- 2 Due to many cross-sea accidents, approximate models, derived from the Navier-Stokes equation, lead to coupled nonlinear Schrödinger equations for the wave envelopes. [Onorato et al. 06], [Shukla et al. 06]
- The theoretical and numerical predictions based on this model are in good agreement with the observed data.



Oerivation from Euler equation using multiscale analysis. [A-Giannoulis]

Symmetry breaking Phase segregation Outlook Bose-Einstein condensation Monster waves Further applications

## 1.3 Further applications

#### Miscellanea

#### Newtonian point particle limit

For shallow external potentials  $v(\varepsilon x)$ , and for superpositions of minimizers

$$\psi(x,t) := \sum_{i} \Phi_{N_{i}(t)}(x - r_{i}(t)) \mathrm{e}^{\mathrm{i}\theta_{i}(x,t)} + o(\varepsilon),$$

the Euler-Lagrange equation w.r.t.  $r_i$  of the corresponding action functional leads to Newtons equation of motion,

$$\ddot{r}_i(t) = -\varepsilon \nabla v(\varepsilon r_i) + \frac{\varepsilon}{2} \sum_{j \neq i} N_j \nabla V_{\rm lr}(\varepsilon(r_i(t) - r_j(t)) + o(\varepsilon)).$$

It describes the motion of extended particle in shallow external potential weakly interacting with a dispersive environment ( $\Rightarrow$  Newtonian gravity).

- Onlinear optics
- Plasma physics
- Material sciences ...

Bose-Einstein condensation Monster waves Further applications

## Large coupling phenomena

We will discuss two time independent large coupling phenomena.

#### Symmetry breaking [A et al. 02]

 Consider the Hartree equation with an attractive Coulomb two-body interaction, and let the external potential have a given symmetry.

Then, any ground state exhibits spontaneous symmetry breaking in the large coupling regime.

#### Phase segregation [A-Squassina 09]

 Consider a system of two coupled Hartree equations with repulsive Coulomb two-body interactions, and let the external potentials be confining.

Then, any system ground state undergoes phase segregation in the large interspecies coupling regime.

Functional setting Existence theory Theorem Remarks

## 2.1 Symmetry breaking: Functional setting

Definition: The function space

$$H^{1}(\mathbb{R}^{3}) = \{\psi \in L^{2}(\mathbb{R}^{3}) \mid \|\nabla\psi\| < \infty\}$$

Definition: The Hartree functional

Let  $v \in C_b(\mathbb{R}^3, \mathbb{R})$ , set  $V(x) := |x|^{-1}$ , and let g > 0. The functionals  $\mathcal{E}_g, \mathcal{E}_{v,g} : H^1(\mathbb{R}^3) \to \mathbb{R}$  are defined by

 $\mathcal{E}_{g}[\psi] := \mathbf{T}[\psi] - \mathbf{g}\mathbf{H}[\psi],$  $\mathcal{E}_{v,g}[\psi] := \mathcal{E}_{g}[\psi] + \mathbf{v}[\psi],$ 

where the kinetic, the external, and the Hartree energy are defined by

 $T[\psi] := \frac{1}{2} \|\nabla\psi\|^2,$   $v[\psi] := (\psi, v\psi),$  $H[\psi] := (\psi, V * |\psi|^2 \psi).$ 

Remark  $|H[\psi]| \le C ||\psi||^3 ||\nabla \psi||$  by Hardy-Littlewood-Sobolev, Gagliardo-Nirenberg.

Functional setting Existence theory Theorem Remarks

# 2.2 Existence theory

## Proposition: Existence of a minimizer

Let the external potential  $v : \mathbb{R}^3 \to \mathbb{R}$  satisfy one of the following assumptions.

- It vanishes.
- **2** It is a localized trap, i.e.  $v \in L^{3/2}(\mathbb{R}^3) + L^{\infty}(\mathbb{R}^3)$  satisfies  $v \leq 0$  with  $v \neq 0$ , and  $v(x) \to 0$  for  $|x| \to \infty$ .
- It is a confining trap, i.e.  $v \in L^1_{loc}(\mathbb{R}^3)$  satisfies  $v \ge 0$  and  $v(x) \to \infty$  for  $|x| \to \infty$ .

Then, there exists a Hartree minimizer.

*Proof.* The direct method in the calculus of variations leads to the assertion (and e.g. the concentration compactness principle [Lions 84] for (1) and (2)).

#### Remarks

- Note that, if  $v \in L^p(\mathbb{R}^3) + L^q(\mathbb{R}^3)$  with  $\frac{3}{2} \le p, q < \infty$  satisfies  $v \ge 0$  and  $v \ne 0$ , no minimizer exists. [Lions 84]
- For *short range* two-body potentials *V* (e.g. of van der Waals type) and no trap, Birman-Schwinger theory implies the existence of a minimizer for sufficiently large couplings only (e.g. CLR bounds).

Functional setting Existence theory Theorem Remarks

# 2.3 Theorem

#### Theorem: Symmetry breaking [A et al. 02]

#### Assume that

- $v \in C_b(\mathbb{R}^3, \mathbb{R})$ ,
- $G \in E(3)$  is s.t. any minimizing sequence  $x_n \in \mathbb{R}^3$  of v satisfies the gap condition

 $\liminf_{n \to \infty} |G(x_n) - x_n| > 0.$ 

Then, for sufficiently large g > 0, any minimizer  $\Phi$  of the Hartree functional exhibits spontaneous symmetry breaking,

 $\left|\Phi\circ G\right|^{2}\neq\left|\Phi\right|^{2}.$ 

#### Remarks

- If the infimum of v is attained on its set  $M_v$  of minima, then the gap condition reads  $\inf_{x \in M_v} |G(x) x| > 0$ .
- This theorem implies the symmetry breaking formulated earlier: if v o G = v for some G satisfying the gap condition, then the minimizer breaks the symmetry of v.

Functional setting Existence theory Theorem Remarks

## Examples and proof strategy

#### Examples: External potential

- Double well
- 2 Mexican hat
- Periodic potential
- For a single well, the gap condition is not satisfied for any  $G \in E(3)$  which is a symmetry of v.

#### The proof will be carried out in three steps:

- Any approximate free minimizer is arbitrarily strongly concentrated.
- Any minimizer is an approximate free minimizer, and it is localized around the minima of the external potential.
- Any invariant minimizer violates mass conservation.

Functional setting Existence theory Theorem Remarks

# Step1: Any approximate free minimizer is arbitrarily strongly concentrated.

Definition: Mass, free ground state energy, and approximate free minimizers

For any subset  $\Omega \subseteq \mathbb{R}^3$  and any  $\psi \in L^2(\mathbb{R}^3)$ , we define

 $\mathcal{N}_{\Omega}[\psi] := \|\psi\|_{L^2(\Omega)}^2,$ 

and  $N[\psi] := N_{\mathbb{R}^3}[\psi]$ . For  $0 < \eta < 1$  and g > 0, the free ground state energy and the set of approximate free minimizers are defined by

$$E_g := \inf \{ \mathcal{E}_g[\psi] \mid \psi \in H^1(\mathbb{R}^3) \text{ and } \mathbb{N}[\psi] = 1 \},$$
$$\mathcal{M}_q^{(\eta)} := \{ \psi \in H^1(\mathbb{R}^3) \mid \mathbb{N}[\psi] = 1 \text{ and } \mathcal{E}_q[\psi] \le (1 - \eta) E_q \}.$$

#### Lemma 1: Concentration

Let  $0 < \delta < 1$ . Then, there exist  $\eta_0 > 0$ ,  $g_0 > 0$ , and  $y_0 \in \mathbb{R}^3$ , s.t., for all  $\psi \in \mathcal{M}_g^{(\eta)}$  with  $\eta \leq \eta_0$  and  $g \geq g_0$ , we have

 $\mathcal{N}_{B_{\delta}(y_0)}[\psi] \ge 1 - \delta.$ 

Motivation Functional setting Symmetry breaking Existence theory Phase segregation Theorem Outlook Remarks

# Step1

#### Proof.

**(**) We introduce a partition of unity: Let  $\chi \in C_0^{\infty}(\mathbb{R}^3)$  satisfy

- supp  $\chi \subset B_1(0)$ ,
- $0 \leq \chi \leq 1$ ,
- $\bullet \|\chi\| = 1.$

Moreover, for any  $y \in \mathbb{R}^3$  and any  $0 < \delta < 1$ , we define

- $\chi_{y,\delta}(x) := \chi(\frac{x-y}{\delta}),$
- $j_{y,\delta}(x) := \delta^{-3/2} \chi_{y,\delta}(x).$

We then have the following:

• (Overlap) For any  $0 < \gamma < 1$ , there exists  $\varepsilon > 0$  s.t., for all  $x, x' \in \mathbb{R}^3$  with  $|x - x'| < \varepsilon$ ,

$$\int_{\mathbb{R}^3} \mathrm{d}y \,\,\chi^2(x-y)\,\chi^2(x'-y) \ge 1-\gamma.$$

• (Partition of unity) For any  $0 < \delta < 1$ , we have, for all  $x \in \mathbb{R}^3$ ,

$$\int_{\mathbb{R}^3} \mathrm{d}y \; j_{y,\delta}^2(x) = 1.$$

• (IMS localization) For any  $0 < \delta < 1$ , we have, with  $p := -i\nabla$ ,

$$p^2 = \int_{\mathbb{R}^3} \mathrm{d}y \ j_{y,\delta} p^2 j_{y,\delta} - \int_{\mathbb{R}^3} \mathrm{d}y \ (\nabla j_{y,\delta})^2.$$

 Motivation
 Functional setting

 Symmetry breaking
 Existence theory

 Phase segregation
 Theorem

 Outlook
 Remarks

## Step1

Let  $0 < \delta < 1$  be fixed.

Using IMS localization, we have

$$\mathbf{T}[\psi] = \frac{1}{\delta^3} \int_{\mathbb{R}^3} \mathrm{d}y \ \mathbf{T}[\boldsymbol{\chi}_{\boldsymbol{y},\boldsymbol{\delta}} \psi] - \frac{1}{\delta^2} \mathbf{T}[\boldsymbol{\chi}].$$

Let 0 < γ < 1. Then, using the overlap property, there exists an ε > 0 s.t., integrating over the ball of radius εδ and its complement, we get

$$\mathrm{H}[\psi] \leq \frac{1}{\delta^3} \frac{1}{1-\gamma} \int_{\mathbb{R}^3} \mathrm{d}y \ \mathrm{H}[\chi_{y,\delta}\psi] + \frac{1}{\varepsilon\delta}.$$

• Using the scaling  $S(\alpha, \beta)\psi(x) := \alpha^{3/2}\beta^2\psi(\alpha\beta x)$  with  $\alpha, \beta > 0$ , we get, for any nonvanishing  $\varphi \in H^1(\mathbb{R}^3)$ ,

$$\mathcal{E}_{\alpha\beta}[\varphi] = \alpha^2 \|\varphi\|^6 \mathcal{E}_{\beta}[S(\alpha^{-1}, \|\varphi\|^{-2})\varphi].$$

20/31

 Motivation
 Functional setting

 Symmetry breaking
 Existence theory

 Phase segregation
 Theorem

 Outlook
 Remarks

## Step1

Plugging (2), (3), and (4) into the functional, we get the lower bound

$$\begin{split} \mathcal{E}_{g}[\psi] &= \mathrm{T}[\psi] - g\mathrm{H}[\psi] \\ &\geq \frac{1}{\delta^{3}} \int_{\mathbb{R}^{3}} \mathrm{d}y \; \mathcal{E}_{\frac{g}{1-\gamma}}[\chi_{y,\delta}\psi] - \frac{1}{\delta^{2}}\mathrm{T}[\chi] - \frac{g}{\varepsilon\delta} \\ &= \frac{1}{\delta^{3}(1-\gamma)^{2}} \int_{\mathbb{R}^{3}} \mathrm{d}y \; \|\chi_{y,\delta}\psi\|^{6} \underbrace{\mathcal{E}_{g}[S(1-\gamma,\|\chi_{y,\delta}\psi\|^{-2})\chi_{y,\delta}\psi]}_{\geq E_{g}=g^{2}E_{1}} - \frac{1}{\delta^{2}}\mathrm{T}[\chi] - \frac{g}{\varepsilon\delta}. \end{split}$$

Next, we do the following:

- We use the assumption  $\psi \in \mathcal{M}_g^{(\eta)}$ , i.e.  $\mathcal{E}_g[\psi] \leq (1-\eta)E_g = g^2(1-\eta)E_1$ ,
- we divide the inequality by  $g^2 E_1 < 0$ ,
- we use  $\|\chi_{y,\delta}\psi\|^4 \leq \mathrm{N}^2_{B_{\delta}(y)}[\psi].$

Then, we find

$$1 - \eta \leq \frac{1}{\delta^3 (1 - \gamma)^2} \sup_{y \in \mathbb{R}^3} \mathcal{N}_{B_{\delta}(y)}^2[\psi] \underbrace{\int_{\mathbb{R}^3} dy \, \|\chi_{y,\delta}\psi\|^2}_{=\delta^3} + \frac{1}{g^2 |E_1|} \left(\frac{1}{\delta^2} \mathcal{T}[\chi] + \frac{g}{\varepsilon\delta}\right).$$

21/31

This concludes the proof of Lemma 1.

Functional setting Existence theory Theorem Remarks

Step 2: Any minimizer is an approximate free minimizer, and it is localized around the minima of the external potential.

#### Definition: Ground state energy and minimizers

Let  $v \in C_b(\mathbb{R}^3, \mathbb{R})$  and g > 0. The ground state energy and the set of minimizers are defined by

$$E_{v,g} := \inf \{ \mathcal{E}_{v,g}[\psi] \, | \, \psi \in H^1(\mathbb{R}^3) \text{ and } \mathbb{N}[\psi] = 1 \},$$

$$\mathcal{M}_{v,g} := \{ \psi \in H^1(\mathbb{R}^3) \, | \, \mathbb{N}[\psi] = 1 \text{ and } \mathcal{E}_{v,g}[\psi] = E_{v,g} \}.$$

#### Lemma 2: Localization

Let  $v \in C_b(\mathbb{R}^3, \mathbb{R}), 0 < \delta < 1$ , and  $\varepsilon > 0$ . Then, there exist  $y_* \in \mathbb{R}^3$  and  $g_* > 0$ s.t. any  $\Phi \in \mathcal{M}_{v,g}$  with  $g \ge g_*$ , is an approximate free minimizer satisfying  $N_{B_{\delta}(y_*)}[\Phi] \ge 1 - \delta,$ and is localized around the minima of the potential,  $\inf_{x \in B_{\delta}(y_*)} v(x) \le \inf_{x \in \mathbb{R}^3} v(x) + \varepsilon.$ 



## Step 2

#### Proof.

• Pick 
$$\Phi \in \mathcal{M}_{v,g}$$
 and any  $\psi \in H^1(\mathbb{R}^3)$  with  $N[\psi] = 1$ . Then, using  
•  $0 \ge \mathcal{E}_{v,g}[\Phi] - \mathcal{E}_{v,g}[\psi] = \mathcal{E}_g[\Phi] - \mathcal{E}_g[\psi] + v[\Phi] - v[\psi],$   
•  $|v[\Phi] - v[\psi]| \le 2||v||_{\infty},$ 

we can bound the free energy of the minimizer by

$$\mathcal{E}_g[\Phi] \le E_g\left(1 - \frac{2\|v\|_{\infty}}{g^2|E_1|}\right).$$

3 To prove the 2nd part, we set  $v_* := \inf_{x \in \mathbb{R}^3} v(x)$ .

- We note that, for any  $\varepsilon > 0$ , there exist  $y_1 \in \mathbb{R}^3$  and  $\delta_1 > 0$  s.t., for all  $x \in B_{\delta_1}(y_1)$ , we have  $v(x) \leq v_* + \varepsilon/2$  since  $v \in C(\mathbb{R}^3, \mathbb{R})$ .
- Moreover, we assume that

$$\inf_{x \in B_{\delta}(y_*)} v(x) > v_* + \varepsilon.$$

| Motivation        | Functional setting |
|-------------------|--------------------|
| Symmetry breaking | Existence theory   |
| Phase segregation | Theorem            |
| Outlook           | Remarks            |

## Step 2

**(**) We define the translated minimizer  $\Phi'(x) := \Phi(x - (y_1 - y_*))$ , and we show that  $\Phi'$  has strictly lower energy than  $\Phi$ . Since

•  $N_{B_{\delta}(y_1)}[\Phi'] = N_{B_{\delta}(y_*)}[\Phi] \ge 1 - \delta$  and  $N_{\mathbb{R}^3 \setminus B_{\delta}(y_1)}[\Phi'] \le \delta$ , we have, on one hand,

$$\mathbf{v}[\Phi'] - v_* \leq \frac{\varepsilon}{2} + \|v - v_*\|_{\infty} \underbrace{\mathbf{N}_{\mathbb{R}^3 \setminus B_{\delta_1}(y_1)}[\Phi']}_{\leq \delta, \text{ if } \delta = \mathcal{O}(\varepsilon) \leq \delta_1}.$$

On the other hand, using the assumption, we get

$$\mathbf{v}[\Phi] - v_* > \varepsilon \underbrace{\mathbf{N}_{B_{\delta}(y_*)}[\Phi]}_{\geq 1-\delta, \text{ by 1st part}} - \|v - v_*\|_{\infty} \underbrace{\mathbf{N}_{\mathbb{R}^3 \setminus B_{\delta}(y_*)}[\Phi]}_{\leq \delta, \text{ by 1st part}}.$$

Hence, plugging these bounds into the energy difference, we get

$$\begin{aligned} \mathcal{E}_{v,g}[\Phi'] - \mathcal{E}_{v,g}[\Phi] &= \mathbf{v}[\Phi'] - v_* - (\mathbf{v}[\Phi] - v_*) \\ &< -\left(\frac{\varepsilon}{2} - \delta(\varepsilon + 2\|v - v_*\|_{\infty})\right), \end{aligned}$$

and the r.h.s. is strictly negative if  $\delta$  is sufficiently small. This concludes the proof of Lemma 2.

П

Motivation Functional setting Symmetry breaking Existence theory Phase segregation Theorem Outlook Remarks

Step 3: Any invariant minimizer violates mass conservation.

Proof of the Theorem.

- The gap condition implies that, for  $\varepsilon > 0$  sufficiently small, there exists  $0 < \delta < 1/2$  s.t., for any  $x \in \mathbb{R}^3$  satisfying  $v(x) \le v_* + 2\varepsilon$ , it holds  $|G(x) x| > 4\delta$ .
- 2 It follows from the 2nd part of Lemma 2 that, for any ε, δ > 0, there exists x<sub>0</sub> ∈ B<sub>δ</sub>(y<sub>\*</sub>) s.t. v(x<sub>0</sub>) ≤ v<sub>\*</sub> + 2ε. Hence, we have

$$G(y_*) - y_*| \ge \underbrace{|G(x_0) - x_0|}_{> 4\delta, \text{ by (1)}} - \underbrace{|G(y_*) - G(x_0) + y_* - x_0|}_{\le 2|x_0 - y_*| \le 2\delta} > 2\delta$$

**3** Let  $\Phi \in \mathcal{M}_{v,g}$  with  $g \ge g_*$ , and assume that  $\Phi \circ G = \Phi$ . Then, since  $N_{B_{\delta}(G(y_*))}[\Phi] = N_{B_{\delta}(y_*)}[\Phi] \ge 1 - \delta$  due to the 1st part of Lemma 2, we get a contradiction,

$$\begin{split} \mathbf{N}[\Phi] &\geq \mathbf{N}_{B_{\delta}(y_*)}[\Phi] + \mathbf{N}_{B_{\delta}(G(y_*))}[\Phi] \\ &\geq 2(1-\delta) > 1. \end{split}$$

This cocludes the proof of the Theorem.

Motivation Fu Symmetry breaking Exi Phase segregation The Outlook Re

Functional setting Existence theory Theorem Remarks

# 2.4 Remarks

## Theorem: Uniqueness [A et al. 02]

- The minimizer is unique for sufficiently small coupling.
- Symmetry breaking occurs above a strictly positive critical coupling only.

## Size of critical coupling: Numerics [A et al. 02]

- v is a double well composed of  $(\cosh |x|)^{-1}$ -type wells.
- Numerical analysis (FE) of nonlinear iteration procedures [A 02,09].



# 3. Phase segregation

#### Definition: The function space

Let  $v_1, v_2 \in C(\mathbb{R}^3, \mathbb{R}^+_0)$  be confining, and define

$$\mathcal{H} := \{ [\psi_1, \psi_2] \in H^1(\mathbb{R}^3)^{\times 2} \, | \, (\psi_i, v_i \psi_i) < \infty, \, i = 1, 2 \}.$$

#### Definition: The Hartree functional

For i = 1, 2, let  $g_i > 0$  and  $\kappa > 0$ , and define the Hartree system functional  $\mathcal{E}_{\kappa} : \mathcal{H} \to \mathbb{R}$  by

$$\mathcal{E}_{\kappa}[\psi_1,\psi_2] := \sum_{i=1}^2 \left( \mathbf{T}[\psi_i] + \mathbf{v}_i[\psi_i] + \mathbf{g}_i \mathbf{H}[\psi_i] \right) + \kappa \mathbf{H}[\psi_1,\psi_2],$$

where the interspecies Hartree energy (direct term) is given by

$$H[\psi_1, \psi_2] := (\psi_1, V * |\psi_2|^2 \psi_1).$$

## Phase segregation

#### Theorem: Phase segregation [A-Squassina 09]

- For any  $\kappa > 0$ , there exists a system minimizer  $[\Phi_1^{\kappa}, \Phi_2^{\kappa}]$ .
- Output Any sequence of system minimizers features phase segregation in the large interspecies coupling limit, i.e. for κ → ∞, we have

$$\mathbf{H}[\Phi_1^{\kappa}, \Phi_2^{\kappa}] = o(\kappa^{-1}).$$

Remark Different types of spatial separation exhibited by BE condensates are distinguished by their dynamical behavior after (adiabatically) switching off the confining potentials [Timmermans 98]:

- Potential separation: diffusion into each other
- Phase separation: persists in the absence of external potentials

#### 





Spatial separation

2000 (A)

6.02

0.015

6.01

0.001







# 4. Outlook

#### Directions (proposed or in progress)

- (BEC) Dynamical potential/phase separation.
- (BEC) More general interacting systems (BEC triplet states).
- Magnetic fields) Existence of system minimizers.
- (Monster waves) Derivation of the system of coupled nonlinear Schrödinger equations from Navier-Stokes equation. [A-Giannoulis]
- (Newtonian limit) Soliton dissipation phenomena: return to equilibrium [A], coalescence, structure formation, ...
- Many more ...

# Thank you for your attention!



Katsushika Hokusai The great wave off Kanagawa (woodcut, ~1830)