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1. Motivation: The Hartree equation is ubiquitous

Definition

The nonlinear and nonlocal Hartree equation:

i∂tψ(x, t) =
[
−∆ + v(x) +

∫
dy V (x−y) |ψ(y, t)|2

]
ψ(x, t)

The ingredients are the following:

ψ(x, t) is the wave function.

v(x) is the external potential.

V (x) is the interaction potential (two-body potential).

In which context does this equation appear?
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1.1 Bose-Einstein condensation (BEC)

Many body quantum systems: Effective regimes

The Hamiltonian for N (spinless) bosons reads

HN =
N∑
i=1

(−∆i) +
∑
i<j

VN (xi − xj).

The following scalings are being studied:

Mean field scaling:
VN (x) = N−1V (x)

Gross-Pitaevskii scaling:
VN (x) = N2V (Nx)

Remark Frequent and weak vs. rare and strong

In the limit N →∞, the many body quantum system can be described by the
following effective regimes.
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BEC

Mean field regime

=⇒ Hartree equation
The solution of the time dependent Schrödinger equation converges to the
solution of the Hartree equation, i.e., for N →∞, we have, in trace norm,

trN−1 P
[
e−itHNψ⊗N

]
→ P [ψt].

[Spohn 80], [Erdős-Yau 01] (BBGKYa) ; [Hepp 74], [Ginibre-Velo 79], [Pickl 09]

aBogoliubov-Born-Green-Kirkwood-Yvon

Gross-Pitaevskii (GP) regime

=⇒ GP equation
i∂tψ(x, t) = (−∆ + v(x) + |ψ(x, t)|2)ψ(x, t)

1 The ground state of HN + vN , where vN is confining, converges to the GP
ground state. [Lieb et al. 00, 02]

2 The solution of the time dependent Schrödinger equation converges to the
solution of the GP equation. [Erdős et al. 07,08]
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BEC

Experiments: 1995

1 A gas of ∼ 103−106 rubidium 87
37Rb, sodium 23

11Na, or lithium 7
3Li atoms is

initially confined in a magnetic trap of size ∼ 10−4m and cooled down to
∼ 10−6K.

2 By optical methods, a sharp peak is recorded in the velocity distribution of
the atoms released to free expansion after switching off the trap.
[Anderson et al. 95], [Davies et al. 95], [Bradley et al. 95]

[Anderson et al. 95]
L: temperature just above condensation
M: just after the appearance of the condensate
R: evaporation leaves a (nearly) pure condensate

=⇒ The minimizer of the
GP functional describes the
condensate in the trap.
=⇒ The time dependent
GP equation describes the
condensate after switching
off the trap.
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BEC: Extended scenarios

High density situations

1 Original BEC scenario: the gas is dilute and has repulsive interactions.
2 For attractive interactions, the system collapses as soon as the number of

condensate atoms exceeds a critical value ∼ 103. [Bradley et al. 95, 97]

3 The collapse has its mathematical manifestation in the nonexistence of a
minimizer of the GP functional,

EGP[ψ] := T[ψ]−gGP[ψ],

where g > 0, and we define the kinetic and the GP energy by

T[ψ] := 1
2
‖∇ψ‖2,

GP[ψ] := ‖ψ‖44.

Namely, using the scaling ψλ(x) := λ3/2ψ(λx), we have, for λ→∞,

EGP[ψλ] = λ2T[ψ]− gλ3GP[ψ]→ −∞.
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BEC: Extended scenarios

4 Even close to collapse, the condensate is significantly affected by
mechanisms not included in GP theory: important are

the internal structure of the bosons,
ionization and recombination processes,
the interaction with the electromagnetic field.

5 Replacing the GP energy by the Hartree energy,

H[ψ] := (ψ, V ∗|ψ|2ψ),

amounts to replacing the GP scaling by the mean field scaling, and:
It accounts for a less coarse-grained resolution of the boson-boson interaction.
The existence of a minimizer is always assured (even without a trap).
It continues to be mathematically meaningful as the collapse point is
approached (and even beyond).
It may be expected to give a qualitative account of the onset of the collapse.

6 These considerations also apply to the case of repulsive interaction if the
density becomes high.
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BEC: Extended scenarios

Interacting condensates

1 It is experimentally possible to create several different condensates in the
same trap repelling each other. [Myatt et al. 96], [Hall et al. 98], [Stenger et al. 98]

2 Two interacting condensates, possibly made of different atomic species
(e.g. 87

37Rb and 39
19K), are described by{

i∂tψ1(x, t) =
(
−∆ + v1(x) + g1|ψ1(x, t)|2 + κ|ψ2(x, t)|2

)
ψ1(x, t)

i∂tψ2(x, t) =
(
−∆ + v2(x) + g2|ψ2(x, t)|2 + κ|ψ1(x, t)|2

)
ψ2(x, t)

3 For the same reasons as described in the single condensate case, we
may replace the local GP energy by the nonlocal Hartree energy,

|ψi|2ψj 7→ V ∗ |ψi|2ψj .
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1.2 Monster waves

Observations

The estimated loss of carriers of length > 200m is around 10/year. A
prominent case is the complete disappearance of the LASH-carrier
München in 1978 (261m). [Schmitz-Eggen 02]

Reported waves suddenly reach heights ∼ 30m.

The first measurement was done on the Draupner-E platform in 1995.

EU project MaxWave involved the satellites ERS-1/2: such waves were
discovered to be frequent!
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Monster waves

Theoretical approaches

1 Different models have been proposed. The linear models all suffered from
one or several of the following problems:

The predicted frequencies are far too small compared with the satellite data.
The speed of the build-up and the reachable height are not big enough.
The stability is very short-lived (dispersion).

2 Due to many cross-sea accidents, approximate models, derived from the
Navier-Stokes equation, lead to coupled nonlinear Schrödinger equations
for the wave envelopes. [Onorato et al. 06], [Shukla et al. 06]

3 The theoretical and numerical predictions based on this model are in good
agreement with the observed data.

4 Derivation from Euler equation using multiscale analysis. [A-Giannoulis]
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1.3 Further applications

Miscellanea

1 Newtonian point particle limit
For shallow external potentials v(εx), and for superpositions of minimizers

ψ(x, t) :=
∑
i

ΦNi(t)(x− ri(t))e
iθi(x,t) + o(ε),

the Euler-Lagrange equation w.r.t. ri of the corresponding action
functional leads to Newtons equation of motion,

r̈i(t) = −ε∇v(εri) +
ε

2

∑
j 6=i

Nj ∇Vlr(ε(ri(t)− rj(t)) + o(ε).

It describes the motion of extended particle in shallow external potential
weakly interacting with a dispersive environment (⇒ Newtonian gravity).

2 Nonlinear optics
3 Plasma physics
4 Material sciences ...
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Large coupling phenomena

We will discuss two time independent large coupling phenomena.

Symmetry breaking [A et al. 02]

Consider the Hartree equation with an attractive Coulomb
two-body interaction, and let the external potential have a given
symmetry.

Then, any ground state exhibits spontaneous symmetry breaking in the
large coupling regime.

Phase segregation [A-Squassina 09]

Consider a system of two coupled Hartree equations with
repulsive Coulomb two-body interactions, and let the external
potentials be confining.

Then, any system ground state undergoes phase segregation in the
large interspecies coupling regime.
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2.1 Symmetry breaking: Functional setting

Definition: The function space

H1(R3) = {ψ ∈ L2(R3) | ‖∇ψ‖ <∞}

Definition: The Hartree functional

Let v ∈ Cb(R3,R), set V (x) := |x|−1, and let g > 0. The functionals
Eg, Ev,g : H1(R3)→ R are defined by

Eg[ψ] := T[ψ]−gH[ψ],

Ev,g[ψ] := Eg[ψ] + v[ψ],

where the kinetic, the external, and the Hartree energy are defined by

T[ψ] := 1
2
‖∇ψ‖2,

v[ψ] := (ψ, vψ),

H[ψ] := (ψ, V ∗ |ψ|2ψ).

Remark |H[ψ]| ≤ C‖ψ‖3‖∇ψ‖ by Hardy-Littlewood-Sobolev, Gagliardo-Nirenberg.
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2.2 Existence theory

Proposition: Existence of a minimizer

Let the external potential v : R3 → R satisfy one of the following assumptions.
1 It vanishes.
2 It is a localized trap, i.e. v ∈ L3/2(R3) + L∞(R3) satisfies v ≤ 0 with
v 6= 0, and v(x)→ 0 for |x| → ∞.

3 It is a confining trap, i.e. v ∈ L1
loc(R3) satisfies v ≥ 0 and v(x)→∞ for

|x| → ∞.

Then, there exists a Hartree minimizer.

Proof. The direct method in the calculus of variations leads to the assertion
(and e.g. the concentration compactness principle [Lions 84] for (1) and (2)). �

Remarks
Note that, if v ∈ Lp(R3) + Lq(R3) with 3

2
≤ p, q <∞ satisfies v ≥ 0 and v 6= 0, no

minimizer exists. [Lions 84]

For short range two-body potentials V (e.g. of van der Waals type) and no trap,
Birman-Schwinger theory implies the existence of a minimizer for sufficiently large
couplings only (e.g. CLR bounds).
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2.3 Theorem

Theorem: Symmetry breaking [A et al. 02]

Assume that

v ∈ Cb(R3,R),

G ∈ E(3) is s.t. any minimizing sequence xn ∈ R3 of v satisfies the
gap condition

lim inf
n→∞

|G(xn)− xn| > 0.

Then, for sufficiently large g > 0, any minimizer Φ of the Hartree functional
exhibits spontaneous symmetry breaking,

|Φ ◦G|2 6= |Φ|2.

Remarks
If the infimum of v is attained on its set Mv of minima, then the gap condition reads
infx∈Mv |G(x)− x| > 0.

This theorem implies the symmetry breaking formulated earlier: if v ◦G = v for
some G satisfying the gap condition, then the minimizer breaks the symmetry of v.
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Examples and proof strategy

Examples: External potential

1 Double well
2 Mexican hat
3 Periodic potential
4 For a single well, the gap condition is not satisfied for any G ∈ E(3) which

is a symmetry of v.

The proof will be carried out in three steps:
1 Any approximate free minimizer is arbitrarily strongly concentrated.
2 Any minimizer is an approximate free minimizer, and it is localized around

the minima of the external potential.
3 Any invariant minimizer violates mass conservation.
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Step1: Any approximate free minimizer is arbitrarily strongly
concentrated.

Definition: Mass, free ground state energy, and approximate free minimizers

For any subset Ω ⊆ R3 and any ψ ∈ L2(R3), we define

NΩ[ψ] := ‖ψ‖2L2(Ω),

and N[ψ] := NR3 [ψ]. For 0 < η < 1 and g > 0, the free ground state energy
and the set of approximate free minimizers are defined by

Eg := inf{Eg[ψ] |ψ ∈ H1(R3) and N[ψ] = 1},
M(η)

g := {ψ ∈ H1(R3) |N[ψ] = 1 and Eg[ψ] ≤ (1− η)Eg}.

Lemma 1: Concentration

Let 0 < δ < 1. Then, there exist η0 > 0, g0 > 0, and y0 ∈ R3, s.t., for all
ψ ∈M(η)

g with η ≤ η0 and g ≥ g0, we have

NBδ(y0)[ψ] ≥ 1− δ.
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Step1

Proof.
1 We introduce a partition of unity: Let χ ∈ C∞0 (R3) satisfy

suppχ ⊂ B1(0),
0 ≤ χ ≤ 1,
‖χ‖ = 1.

Moreover, for any y ∈ R3 and any 0 < δ < 1, we define
χy,δ(x) := χ(x−y

δ
),

jy,δ(x) := δ−3/2χy,δ(x).
We then have the following:

(Overlap) For any 0 < γ < 1, there exists ε > 0 s.t., for all x, x′ ∈ R3 with
|x− x′| < ε, ∫

R3
dy χ2(x− y)χ2(x′ − y) ≥ 1− γ.

(Partition of unity) For any 0 < δ < 1, we have, for all x ∈ R3,∫
R3

dy j2y,δ(x) = 1.

(IMS localization) For any 0 < δ < 1, we have, with p := −i∇,

p2 =

∫
R3

dy jy,δ p
2jy,δ −

∫
R3

dy (∇jy,δ)2.
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Step1

Let 0 < δ < 1 be fixed.
2 Using IMS localization, we have

T[ψ] =
1

δ3

∫
R3

dy T[χy,δψ]− 1

δ2
T[χ].

3 Let 0 < γ < 1. Then, using the overlap property, there exists an ε > 0 s.t.,
integrating over the ball of radius εδ and its complement, we get

H[ψ] ≤ 1

δ3

1

1− γ

∫
R3

dy H[χy,δψ] +
1

εδ
.

4 Using the scaling S(α, β)ψ(x) := α3/2β2ψ(αβx) with α, β > 0, we get, for
any nonvanishing ϕ ∈ H1(R3),

Eαβ [ϕ] = α2‖ϕ‖6Eβ [S(α−1, ‖ϕ‖−2)ϕ].
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Step1

5 Plugging (2), (3), and (4) into the functional, we get the lower bound

Eg[ψ] = T[ψ]− gH[ψ]

≥ 1

δ3

∫
R3

dy E g
1−γ

[χy,δψ]− 1

δ2
T[χ]− g

εδ

=
1

δ3(1− γ)2

∫
R3

dy ‖χy,δψ‖6 Eg[S(1− γ, ‖χy,δψ‖−2)χy,δψ]︸ ︷︷ ︸
≥Eg=g2E1

− 1

δ2
T[χ]− g

εδ
.

6 Next, we do the following:
We use the assumption ψ ∈M(η)

g , i.e. Eg [ψ] ≤ (1− η)Eg = g2(1− η)E1,
we divide the inequality by g2E1 < 0,
we use ‖χy,δψ‖4 ≤ N2

Bδ(y)
[ψ].

Then, we find

1− η ≤ 1

δ3(1− γ)2
sup
y∈R3

N2
Bδ(y)[ψ]

∫
R3

dy ‖χy,δψ‖2︸ ︷︷ ︸
= δ3

+
1

g2|E1|

(
1

δ2
T[χ] +

g

εδ

)
.

This concludes the proof of Lemma 1. �
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Step 2: Any minimizer is an approximate free minimizer, and it is
localized around the minima of the external potential.

Definition: Ground state energy and minimizers

Let v ∈ Cb(R3,R) and g > 0. The ground state energy and the set of
minimizers are defined by

Ev,g := inf{Ev,g[ψ] |ψ ∈ H1(R3) and N[ψ] = 1},
Mv,g := {ψ ∈ H1(R3) |N[ψ] = 1 and Ev,g[ψ] = Ev,g}.

Lemma 2: Localization

Let v ∈ Cb(R3,R), 0 < δ < 1, and ε > 0. Then, there exist y∗ ∈ R3 and g∗ > 0
s.t. any Φ ∈Mv,g with g ≥ g∗,

1 is an approximate free minimizer satisfying

NBδ(y∗)[Φ] ≥ 1− δ,
2 and is localized around the minima of the potential,

inf
x∈Bδ(y∗)

v(x) ≤ inf
x∈R3

v(x) + ε.
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Step 2

Proof.
1 Pick Φ ∈Mv,g and any ψ ∈ H1(R3) with N[ψ] = 1. Then, using

0 ≥ Ev,g [Φ]− Ev,g [ψ] = Eg [Φ]− Eg [ψ] + v[Φ]− v[ψ],
|v[Φ]− v[ψ]| ≤ 2‖v‖∞,

we can bound the free energy of the minimizer by

Eg[Φ] ≤ Eg
(

1− 2‖v‖∞
g2|E1|

)
.

2 To prove the 2nd part, we set v∗ := infx∈R3 v(x).
We note that, for any ε > 0, there exist y1 ∈ R3 and δ1 > 0 s.t., for all
x ∈ Bδ1 (y1), we have v(x) ≤ v∗ + ε/2 since v ∈ C(R3,R).
Moreover, we assume that

inf
x∈Bδ(y∗)

v(x) > v∗ + ε.
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Step 2
3 We define the translated minimizer Φ′(x) := Φ(x− (y1 − y∗)), and we

show that Φ′ has strictly lower energy than Φ. Since
NBδ(y1)[Φ

′] = NBδ(y∗)[Φ] ≥ 1− δ and NR3\Bδ(y1)[Φ
′] ≤ δ,

we have, on one hand,

v[Φ′]− v∗ ≤
ε

2
+ ‖v − v∗‖∞ NR3\Bδ1 (y1)[Φ

′]︸ ︷︷ ︸
≤δ, if δ= O(ε)≤ δ1

.

On the other hand, using the assumption, we get

v[Φ]− v∗ > ε NBδ(y∗)[Φ]︸ ︷︷ ︸
≥ 1−δ, by 1st part

−‖v − v∗‖∞ NR3\Bδ(y∗)[Φ]︸ ︷︷ ︸
≤ δ, by 1st part

.

4 Hence, plugging these bounds into the energy difference, we get

Ev,g[Φ′]− Ev,g[Φ] = v[Φ′]− v∗ − (v[Φ]− v∗)

< −
( ε

2
− δ(ε+ 2‖v − v∗‖∞)

)
,

and the r.h.s. is strictly negative if δ is sufficiently small.
This concludes the proof of Lemma 2. �
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Step 3: Any invariant minimizer violates mass conservation.

Proof of the Theorem.
1 The gap condition implies that, for ε > 0 sufficiently small, there exists

0 < δ < 1/2 s.t., for any x ∈ R3 satisfying v(x) ≤ v∗ + 2ε, it holds
|G(x)− x| > 4δ.

2 It follows from the 2nd part of Lemma 2 that, for any ε, δ > 0, there exists
x0 ∈ Bδ(y∗) s.t. v(x0) ≤ v∗ + 2ε. Hence, we have

|G(y∗)− y∗| ≥ |G(x0)− x0|︸ ︷︷ ︸
> 4δ, by (1)

− |G(y∗)−G(x0) + y∗ − x0|︸ ︷︷ ︸
≤2|x0−y∗|≤2δ

> 2δ

3 Let Φ ∈Mv,g with g ≥ g∗, and assume that Φ ◦G = Φ. Then, since
NBδ(G(y∗))[Φ] = NBδ(y∗)[Φ] ≥ 1− δ due to the 1st part of Lemma 2, we
get a contradiction,

N[Φ] ≥ NBδ(y∗)[Φ] + NBδ(G(y∗))[Φ]

≥ 2(1− δ) > 1.

This cocludes the proof of the Theorem. �
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2.4 Remarks

Theorem: Uniqueness [A et al. 02]

The minimizer is unique for sufficiently small coupling.

Symmetry breaking occurs above a strictly positive critical coupling only.

Size of critical coupling: Numerics [A et al. 02]

v is a double well composed of (cosh |x|)−1-type wells.

Numerical analysis (FE) of nonlinear iteration procedures [A 02,09].
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3. Phase segregation

Definition: The function space

Let v1, v2 ∈ C(R3,R+
0 ) be confining, and define

H := {[ψ1, ψ2] ∈ H1(R3)×2 | (ψi, viψi) <∞, i = 1, 2}.

Definition: The Hartree functional

For i = 1, 2, let gi > 0 and κ > 0, and define the Hartree system functional
Eκ : H → R by

Eκ[ψ1, ψ2] :=
2∑
i=1

(T[ψi] + vi[ψi]+giH[ψi]) +κH[ψ1, ψ2],

where the interspecies Hartree energy (direct term) is given by

H[ψ1, ψ2] := (ψ1, V ∗ |ψ2|2ψ1).
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Phase segregation

Theorem: Phase segregation [A-Squassina 09]

1 For any κ > 0, there exists a system minimizer [Φκ1 ,Φ
κ
2 ].

2 Any sequence of system minimizers features phase segregation in the
large interspecies coupling limit, i.e. for κ→∞, we have

H[Φκ1 ,Φ
κ
2 ] = o(κ−1).

Remark Different types of spatial separation exhibited by BE condensates are
distinguished by their dynamical behavior after (adiabatically) switching off the confining
potentials [Timmermans 98]:

Potential separation: diffusion into each other

Phase separation: persists in the absence of external potentials
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4. Outlook

Directions (proposed or in progress)

1 (BEC) Dynamical potential/phase separation.
2 (BEC) More general interacting systems (BEC triplet states).
3 (Magnetic fields) Existence of system minimizers.
4 (Monster waves) Derivation of the system of coupled nonlinear

Schrödinger equations from Navier-Stokes equation. [A-Giannoulis]

5 (Newtonian limit) Soliton dissipation phenomena: return to equilibrium [A],
coalescence, structure formation, ...

6 Many more ...
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Thank you for your attention!

Katsushika Hokusai The great wave off Kanagawa (woodcut, ∼1830)

From Bose-Einstein Condensation to Monster Waves: The Nonlinear Hartree Equation, and some of its Large Coupling Phenomena 31/31


	Motivation
	Bose-Einstein condensation
	Monster waves
	Further applications

	Symmetry breaking
	Functional setting
	Existence theory
	Theorem
	Remarks

	Phase segregation
	Outlook

