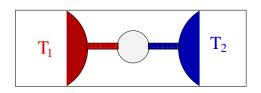
A Rigorous Derivation of the Landauer-Büttiker Formalism



Walter H. Aschbacher (Ecole Polytechnique/TU München)

Okayama University, December 2010

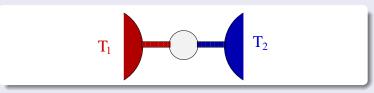
Contents

- 1. Model
- 1.1 Quasifree setting
- 1.2 NESS existence and uniqueness
- 1.3 NESS currents
- 2. Landauer-Büttiker formalism
- 2.1 General structure
- 2.2 Landauer-Büttiker formula
- 3. Remarks

What are we physically interested in?

Open systems: Fundamental paradigm

 A confined sample is coupled to several extended thermal reservoirs at different temperatures.



- For large times, the suitably coupled system is expected to approach a unique NonEquilibrium Steady State (NESS).
- The NESS carries a nontrivial current driven by the thermodynamic force.
- How does this current relate to the underlying scattering process?

What are we physically interested in?

Specific model: XY chain [Lieb et al. 61, Araki 84]

The Heisenberg Hamiltonian density reads

$$H_x = \sum_{n=1,2,3} J_n \sigma_n^{(x)} \sigma_n^{(x+1)} + \lambda \sigma_3^{(x)},$$

and the XY chain is the special case with $J_3 = 0$.

Experiments SrCuO₂, Sr₂CuO₃ [Sologubenko *et al.* 01] with $J_3 \neq 0$ PrCl₃ [D'Iorio *et al.* 83, Culvahouse *et al.* 69] with $J_1 = J_2, J_3 \approx 0$, *i.e.*, $J_3/J_1 \approx 10^{-2}$, and $\lambda = 0$

Formalism of quantum statistical mechanics

Rigorous foundation in the early 1930s:

- lacktriangle An observable A is a selfadjoint operator on the Hilbert space of the system.
- ② The dynamics of the system is determined by a distinguished selfadjoint operator H, called the Hamiltonian, through $A \mapsto A_t = e^{itH} A e^{-itH}$.
- **3** A pure state is a vector ψ in the Hilbert space, and the expectation value of the measurement of A in the state ψ is $(\psi, A\psi)$.

Algebraic reformulation and generalization (von Neumann, Jordan, Wigner, ...):

Observables

C* algebra ³ℓ

Dynamics

(Strongly) continuous group τ^t of *-automorphisms on $\mathfrak A$

States

Normalized positive linear functionals ω on $\mathfrak A$

Example
$$\mathfrak{A} = \mathcal{L}(\mathfrak{h})$$
, $\tau^t(A) = e^{itH}Ae^{-itH}$, and $\omega(A) = \operatorname{tr}(\rho A)$.

1.1 Quasifree setting

Observables

• The algebra of observables is given as follows:

Canonical AntiCommutation Relations (CAR) algebra

Let $\mathfrak h$ be a complex Hilbert space, called the *one-particle Hilbert space*. The *CAR algebra* $\mathfrak A \equiv \mathfrak A(\mathfrak h)$ is the (unique) C^* algebra generated by the identity $\mathbb 1$ and elements $a(f), f \in \mathfrak h$, satisfying:

- ullet a(f) is antilinear in f
- $\{a(f), a(g)\} = 0$
- $\{a(f), a^*(g)\} = (f, g) \mathbb{1}$

Sample and subreservoir structure

$$\mathfrak{h}=\mathfrak{h}_{\mathcal{S}}\oplus\mathfrak{h}_{\mathcal{R}}$$
 and $\mathfrak{h}_{\mathcal{R}}=\oplus_{j=1}^{M}\mathfrak{h}_{j}$

Example: XY NESS [A-Pillet 03] For $x \in \mathbb{Z}$ s.t. $\mathbb{Z}_{\mathcal{S}} = \{|x| \leq \ell\}$, $\mathbb{Z}_1 = \{x < -\ell\}$, $\mathbb{Z}_2 = \{x > \ell\}$, we have $\mathfrak{h} = \ell^2(\mathbb{Z}) \simeq \ell^2(\mathbb{Z}_{\mathcal{S}}) \oplus \ell^2(\mathbb{Z}_1) \oplus \ell^2(\mathbb{Z}_2)$.

Dynamics

• The time evolution has the following structure:

Decoupled and coupled dynamics

The decoupled and the coupled time evolutions are given by groups of *Bogoliubov* *-automorphisms acting on the generators as

$$\tau_0^t(a(f)) = a(\mathrm{e}^{\mathrm{i}th_0}f) \quad \text{and} \quad \tau^t(a(f)) = a(\mathrm{e}^{\mathrm{i}th}f).$$

Assumptions [A et al. 07]

- (A1) $h_0, h \ge -E_0$
- (A2) $h-h_0 \in \mathcal{L}^1(\mathfrak{h})$
- (A3) $\sigma_{\rm sc}(h) = \emptyset$

Example: XY NESS $h=\operatorname{Re}(u)\in\mathcal{L}(\mathfrak{h})$ and $h-h_0=v_L+v_R\in\mathcal{L}^0(\mathfrak{h})$ with $v_L=\operatorname{Re}(u^{-(\ell+1)}p_0u^\ell)$ and $v_R=\operatorname{Re}(u^\ell p_0u^{-(\ell+1)})$ (for $J_1=J_2$ and $\lambda=0$).

States

- States are normalized positive linear functionals on \mathfrak{A} , denoted by $\mathcal{E}(\mathfrak{A})$.
- The two-point function is characterized as follows:

Density

The *density* of a state $\omega \in \mathcal{E}(\mathfrak{A})$ is the operator $\varrho \in \mathcal{L}(\mathfrak{h})$ satisfying $0 \leq \varrho \leq 1$ and, for all $f, g \in \mathfrak{h}$,

$$\omega(a^*(f)a(g)) = (g, \varrho f).$$

• The class of states we are concerned with is:

Quasifree states

A state $\omega \in \mathcal{E}(\mathfrak{A})$ with density $\varrho \in \mathcal{L}(\mathfrak{h})$ is called *quasifree* if

$$\omega(a^*(f_n)...a^*(f_1)a(g_1)...a(g_m)) = \delta_{nm} \det[(g_i, \varrho f_j)]_{i,j=1}^n.$$

Example: XY chain $\varrho = \varrho(h) = (1 + e^{\beta h})^{-1}$ is the thermal equilibrium state at inverse temperature β (i.e. the so-called KMS state).

Quasifree setting

States

• For the nonequilibrium situation, we use:

NESS [Ruelle 01]

A NESS $\omega_+ \in \mathcal{E}(\mathfrak{A})$ associated with the C^* -dynamical system (\mathfrak{A},τ) and the initial state $\omega_0 \in \mathcal{E}(\mathfrak{A})$ is a weak-* limit point for $T \to \infty$ of

$$\left\{ \frac{1}{T} \int_0^T \mathrm{d}t \ \omega_0 \circ \tau^t \ \middle| \ T > 0 \right\}.$$

- There are two rigorous approaches to the construction of NESS.
 - (1) The time dependent scattering approach [Ruelle 00]
 - (2) The spectral approach [Jakšić-Pillet 02]

We will use the first approach.

1.2 NESS existence and uniqueness

Proposition: NESS density [A et al. 07]

Assume (A1)–(A3), and let the initial state $\omega_0 \in \mathcal{E}(\mathfrak{A})$ be

- (1) quasifree with density $\varrho_0 \in \mathcal{L}(\mathfrak{h})$,
- (2) τ_0^t -invariant.

Then, there exists a unique NESS $\omega_+ \in \mathcal{E}(\mathfrak{A})$ with density $\varrho_+ \in \mathcal{L}(\mathfrak{h})$ given by

$$\varrho_+ = w_+ \varrho_0 w_+^* + \sum_{e \in \operatorname{spec}_{\operatorname{pp}}(h)} 1_e(h) \varrho_0 1_e(h).$$

Def: $1_e(h), 1_{ac}(h) \in \mathcal{L}(\mathfrak{h})$ denote the spectral projections. The wave operator $w_{\pm} \equiv w_{\pm}(h, h_0) \in \mathcal{L}(\mathfrak{h})$ is defined by $w_{\pm} := s - \lim_{t \to \pm \infty} \mathrm{e}^{\mathrm{i}th} \mathrm{e}^{-\mathrm{i}th_0} 1_{ac}(h_0)$.

Example: XY NESS [A-Pillet 03] $\varrho_0=(1+\mathrm{e}^{k_0})^{-1}$, where $k_0=0\oplus\beta_1h_1\oplus\beta_2h_2$, and, with $\beta=(\beta_1+\beta_2)/2$, $\delta=(\beta_1-\beta_2)/2$, and the asymptotic velocity v, we have

$$\varrho_+ = w_+ \varrho_0 w_+^* = (1 + e^{k_+})^{-1}$$
 with $k_+ = (\beta - \delta \operatorname{sign} v)h$.

1.3 NESS currents

Current observables

Charge currents are defined as follows:

Charge

 $q \in \mathcal{L}(\mathfrak{h})$ is called a *charge* if $q = q^*$ and $e^{ith_0}qe^{-ith_0} = q$ for all $t \in \mathbb{R}$.

Charge current

The *charge current* $\varphi_q \in \mathcal{L}^1(\mathfrak{h})$ w.r.t. charge q is defined by

$$\varphi_q = \mathrm{i}[q, h - h_0].$$

The extensive charge current is $\Phi_q = d\Gamma(\varphi_q) \in \mathfrak{A}$.

Example: XY NESS $q=h_j\in\mathcal{L}(\mathfrak{h})$ is the energy of subreservoir j=1,2, and $\varphi_q\in\mathcal{L}^0(\mathfrak{h}).$

2.1 General structure

Landauer-Büttiker formalism

The Landauer-Büttiker transport formalism for systems of independent electrons expresses the steady currents flowing through the small sample coupled to extended reservoirs in thermal equilibrium in terms of the one-electron scattering matrix $S=w_+^*w_-$.

Theorem: General Landauer-Büttiker formalism [A et al. 07]

Assume (A1)-(A3), and let

- (1) $\omega_0 \in \mathcal{E}(\mathfrak{A})$ be a τ_0^t -invariant, quasifree initial state with density $\varrho_0 \in \mathcal{L}(\mathfrak{h})$,
- (2) $q \in \mathcal{L}(\mathfrak{h})$ a charge,
- (3) $|||\varrho_0(e)||||q(e)|||_{L^{\infty}(\sigma_{ac}(h_0))} < \infty.$

Then, the NESS current can be expressed as

$$\omega_{+}(\Phi_q) = \frac{1}{2\pi} \int_{\sigma_{ac}(h_0)} \operatorname{tr}(\varrho_0(e)[q(e) - S^*(e)q(e)S(e)]).$$

General structure

Proof.

• With $\omega(\mathrm{d}\Gamma(c)) = \mathrm{tr}(\varrho c)$ for $c \in \mathcal{L}^1(\mathfrak{h})$, the factorization $h - h_0 = x^*y$ for some $x, y \in \mathcal{L}^2(\mathfrak{h})$, and the direct integral representation $U: \mathfrak{h}_{\mathrm{ac}}(h_0) \to \int_{\mathfrak{T}_{-}(h_0)}^{\oplus} \mathrm{d}e \ \mathfrak{h}(e)$, we have, with $w \equiv w_+$,

$$\begin{array}{lcl} \omega_{+}(\Phi_{q}) & = & \operatorname{tr}(\varrho_{0}w^{*}\varphi_{q}w) + \sum_{e \in \operatorname{spec}_{\operatorname{pp}}(h)} \operatorname{tr}(\varrho_{0} \underbrace{1_{e}(h)\varphi_{q}1_{e}(h)}) \\ & = & \operatorname{i}\operatorname{tr}(\varrho_{0}w^{*}[q,h-h_{0}]w) \\ & = & \operatorname{i}\operatorname{tr}(\varrho_{0}w^{*}(qx^{*}y-x^{*}yq)w) \\ & = & \operatorname{i}\operatorname{tr}(\varrho_{0}U^{*}Uw^{*}(qx^{*}y-x^{*}yq)wU^{*}U) \\ & = & \operatorname{i}\operatorname{tr}(U\varrho_{0}U^{*}[U(xqw)^{*}(U(yw)^{*})^{*}-U(xw)^{*}(U(yqw)^{*})^{*}]) \\ & = & \operatorname{i}\int_{\sigma_{\operatorname{ac}}(h_{0})} \operatorname{de} \operatorname{tr}(\varrho_{0}(e)D(e)). \end{array}$$

For $a \in \mathcal{L}^2(\mathfrak{h}_{ac}(h_0), \mathfrak{h})$, the map $Z(a, e) \in \mathcal{L}^2(\mathfrak{h}, \mathfrak{h}(e))$ is defined by $Z(a, e)\psi = (Ua^*\psi)(e)$, and we can write the kernel as

$$D(e) = Z(xaw, e)Z^*(yw, e) - Z(xw, e)Z^*(yaw, e).$$

General structure

Stationary scattering theory expresses the dynamical wave operator in terms of the resolvents of the Hamiltonians. Using this scheme, we compute D(e) in four steps.

② [Relate Z(aw,e) to $r_{e-i\delta}(h)$] Formally, we have

$$Z(aw, e)\psi = \lim_{\delta \to 0^+} \delta \int_0^\infty dt \, e^{-\delta t} (U e^{ith_0} e^{-ith} a^* \psi)(e)$$
$$= \lim_{\delta \to 0^+} i \, \delta (U r_{e-i\delta}(h) a^* \psi)(e).$$

③ [Relate $r_{e-i\delta}(h)$ to $yr_{e-i\delta}(h_0)x^*$] Iterating the resolvent identity, we get

$$r_{e-\mathrm{i}\delta}(h) = r_{e-\mathrm{i}\delta}(h_0) - r_{e-\mathrm{i}\delta}(h_0)x^*Q(e-\mathrm{i}\delta)yr_{e-\mathrm{i}\delta}(h_0),$$

where we define $Q(e - i\delta) = (1 + yr_{e-i\delta}(h_0)x^*)^{-1}$.

General structure

© [Compute boundary values] Plugging the foregoing into Z(aw, e), we have $i \delta(Ur_{e-i\delta}(h)a^*\psi)(e) = (Ua^*\psi)(e) - (Ux^*Q(e-i\delta)ur_{e-i\delta}(h_0)a^*\psi)(e)$.

With the sufficiently regular factorization of $h - h_0$, the limit $\delta \to 0^+$ yields

$$Z(aw, e) = Z(a, e) - Z(x, e)Q(e - i0)yr_{e-i0}(h_0)a^*,$$

where we used that, for $a, b \in \mathcal{L}^2(\mathfrak{h})$, the limit $\lim_{\delta \to 0^+} ar_{e \pm i\delta}(h_0)b$ exists in $\mathcal{L}^2(\mathfrak{h})$ for a.e. $e \in \mathbb{R}$ (abstract limiting absorption principle).

1 [Relate D(e) to S(e)] Plugging the foregoing into D(e) and using that $S(e) = 1 - 2\pi \mathrm{i} Z(x,e) Q(e+\mathrm{i} 0) Z^*(y,e)$, we find

$$D(e) = \frac{1}{2\pi i} (q(e) - S^*(e)q(e)S(e)).$$

Finally, the assertion is well-defined since

$$|\omega_{+}(\Phi_{q})| \leq \frac{1}{\pi} \int_{\sigma_{0}(h_{0})} de \|\varrho_{0}(e)\| \|q(e)\| \|S(e) - 1\|_{1} < \infty,$$

where we use $\int_{\sigma_{-1}(h_0)} de \|S(e) - 1\|_1 \le 2\pi \|h - h_0\|_1$ and (3).

2.2 Landauer-Büttiker formula

Landauer-Büttiker formula

We make the following additional assumptions:

(A4)
$$h_0 = h_S \oplus h_R$$
 and $h_R = \bigoplus_{j=1}^M h_j$ (partitioning)

(A5)
$$\sigma_{\rm ess}(h_{\mathcal{S}}) = \emptyset$$

Corollary: Landauer-Büttiker formula [A et al. 07]

Assume (A1)-(A5), and let

- (1) $\varrho_{\mathcal{R}} = \bigoplus_{j=1}^{M} f_j(h_j),$
- (2) $q_{\mathcal{R}} = \bigoplus_{i=1}^{M} q_i(h_i)$.
- (3) $\max_{j,k} \{ |f_j g_k|_{L^{\infty}(\sigma_{ac}(h_j) \cap \sigma_{ac}(h_k))} < \infty \}.$

Then, the NESS current can be expressed as

$$\omega_{+}(\Phi_{q}) = \frac{1}{2\pi} \sum_{j,k=1}^{M} \int_{\sigma_{\mathrm{ac}}(h_{j}) \cap \sigma_{\mathrm{ac}}(h_{k})} \frac{T_{jk}(e)}{T_{jk}(e)} [f_{j}(e) - f_{k}(e)] g_{j}(e).$$

Def: $T_{jk} = \operatorname{tr}(t_{jk}^* t_{jk})$ with $t_{jk} = S_{jk} - \delta_{jk}$ denotes the transmission probability.

3. Remarks

Unbounded charges

Heat currents often stem from charges $q_j = h_j \notin \mathcal{L}(\mathfrak{h})$. The corresponding extensive charge current is i.g. not observable. Regularizing charges q s.t.

$$q1_{(-\infty,\Lambda]}(h_0) \in \mathcal{L}(\mathfrak{h})$$

for all $\Lambda \in \mathbb{R}$, leads to the LB-formalism in the limit $\Lambda \to \infty$.

More general couplings

The assumption (A2) can be generalized to

$$r_{\zeta}(h)^p - r_{\zeta}(h_0)^p \in \mathcal{L}^1(\mathfrak{h}),$$

where $\zeta = -(E_0 + 1)$ and $p \in \{-1\} \cup \mathbb{N}$. This time, the extensive charges require a regularization of the Hamiltonians. Using Birman's invariance principle, the LB-formalism can again be recovered.

Remarks

Entropy production

Using the foregoing remarks, the NESS expectation of the entropy production observable generated by the charges $q=h_j$ and $q=1_j$,

$$\sigma = -\sum_{j=1}^{M} \beta_j (\Phi_{h_j} - \mu_j \Phi_{1_j}),$$

can be expressed with the help of the LB-formalism. Moreover, it allows to derive the strict positivity of the entropy production, i.e. $\omega_{+}(\sigma) > 0$.

Example: XY NESS [A-Pillet 03] $\omega_{+}(\sigma) > 0$ by time dependent scattering theory.

Linear response theory

The LB-formalism leads to expressions for the kinetic transport coefficients,

$$L_{kj}^{\mathrm{hc}} = \partial_{X_j^{\mathrm{c}}} \, \omega_+(\Phi_{q_k^{\mathrm{h}}})|_{X=0},$$

where $\beta_k=\beta-X_k^{\rm h},$ $\beta_k\mu_k=\beta\mu+X_k^{\rm c},$ and $X=(X_1^{\rm h},...,X_M^{\rm c}).$ Moreover, they satisfy the Onsager reciprocity relations.

Summary

Results

- (Content) A generalized LB-formalism is rigorously derived in the context of open quantum system, i.e., for systems of independent electrons, the NESS currents flowing through a sample coupled to several reservoirs are expressed in terms of the underlying scattering process.
- ② (Mathematics) The mathematical framework being C^* algebras (CAR), the derivation is carried out using functional analysis in the form of stationary scattering theory on the one-electron Hilbert space.
- (Assumptions) The assumptions on the sample-reservoir coupling are of general nature.
- 4 (Applications) Our general framework allows, e.g., for the derivation of:
 - Strict positivity of the entropy production
 - Linear response theory