Broken translation invariance in quasifree fermionic correlations out of equilibrium

Walter H. Aschbacher (Ecole Polytechnique)

CPT Marseille April 2011

What's the physical situation we are interested in?

Question:

Open systems

Fundamental paradigm

A confined sample is suitably coupled to two extended thermal reservoirs at different temperatures s.t., for large times, the system approaches a unique nonequilibrium steady state (NESS).

 We consider quasifree fermionic systems over the discrete line whose translation invariance has been broken by a local magnetization κ > 0:

• We ask: What is the mathematical and physical effect of the breaking of translation invariance on the NESS expectation value of (an important class of) spatial correlations?

What's the physical situation we are interested in?

Quasifree fermions play an important role in the study of open systems:

- They allow for a powerful description by means of scattering theory on the one-particle Hilbert space of the observable algebra.
- They are realized in nature.

Specific instance: XY chain [Lieb et al. 61, Araki 84]

• The Heisenberg Hamiltonian density reads (XY chain: $J_3 = 0$)

$$H_x = \sum_{i=1,2,3} J_i \sigma_i^x \sigma_i^{x+1} + \lambda \sigma_3^x.$$

Experiments SrCuO₂, Sr₂CuO₃ [Sologubenko *et al.* 01] with $J_3 \neq 0$ PrCl₃ [Culvahouse *et al.* 69, D'lorio *et al.* 83] with $J_1 = J_2$, $J_3 \approx 0$, $\lambda = 0$

Broken translation invariance in quasifree fermionic correlations out of equilibrium

What's the physical situation we are interested in?

Correlation observable

• The correlation observable whose NESS expectation we study is the ferromagnetic string of length n starting at site x_0 ,

Emptiness Formation Probability (EFP)

$$\prod_{x=x_0}^{x_0+n-1} \frac{1-\sigma_3^{(x)}}{2},$$

introduced in [Korepin et al. 94] (pour fixer les idées).

 After a Araki-Jordan-Wigner transformation [Jordan-Wigner 28, Araki 84] mapping the spin system onto free fermions, the EFP becomes

$$\prod_{x=x_0}^{x_0+n-1} a_x a_x^*$$

Description

Physical/Mathematical ingredients

- Quantum statistical mechanics (Operator algebra approach)
- NESS (Hilbert space scattering theory)
- Orrelation asymptotics (Functional analysis of Toeplitz operators)

References

- Broken translation invariance in quasifree fermionic correlations out of equilibrium J. Funct. Anal. 260 (2011) 3429–56 (arXiv:1103.4512)
- A remark on the subleading order in the asymptotics of the nonequilibrium emptiness formation probability Confluentes Math. 2 (2010) 293–311 (arXiv:1009.1584)
- On the emptiness formation probability in quasi-free states Contemp. Math. 447 (2007) 1–16 (mp_arc 07-34)

Reminder: Algebraic formalism of quantum statistical mechanics

Rigorous foundation in the early 1930s:

- An observable *A* is a selfadjoint operator on the Hilbert space of the system.
- The dynamics of the system is determined by a distinguished selfadjoint operator H, called the Hamiltonian, through $A \mapsto A_t = e^{itH}Ae^{-itH}$.
- A pure state is a vector ψ in the Hilbert space, and the expectation value of the measurement of A in the state ψ is (ψ, Aψ).

Algebraic reformulation and generalization (von Neumann, Jordan, Wigner, ...):

Observables C* algebra ଥ

Dynamics

(Strongly) continuous group τ^t of *-automorphisms on $\mathfrak A$

States

Normalized positive linear functionals ω on $\mathfrak{A},$ denoted by $\mathcal{E}(\mathfrak{A})$

Example
$$\mathfrak{A} = \mathcal{L}(\mathfrak{h}), \tau^t(A) = e^{itH}Ae^{-itH}$$
, and $\omega(A) = tr(\varrho A)$

Correlation expectation
 Correlation structure
 Correlation asymptotics
 Remarks

1.1 General setting

Observables

• The algebra of observables has the following structure:

Selfdual CAR [Araki 71]

Let \mathfrak{H} be a complex Hilbert space and J an antiunitary involution. A *self-dual CAR algebra* $\mathfrak{A}(\mathfrak{H}, J)$ is the C^* completion of the * algebra generated by B(F), $B^*(F)$ for $F \in \mathfrak{H}$, and an identity 1 s.t.

```
  I B(F) is complex linear in F,
```

```
2 \{B^*(F), B(G)\} = (F, G)1,
```

```
  B^*(F) = B(JF).
```

- Projection P ∈ L(𝔅) satisfying JPJ = 1 − P (basis projection): selfdual CAR *-isomorphic to usual CAR over ran(P).
- This is the natural framework to treat quasifree fermionic systems.

2. Correlation expectation 3. Correlation structure 4. Correlation asymptotics 5. Remarks

1.1 General setting

Dynamics

The time evolution has the following structure:

Bogoliubov *-automorphisms [Araki 71]

A Bogoliubov transformation is a unitary operator $U \in \mathcal{L}(\mathfrak{H})$ satisfying [J, U] = 0 which defines a Bogoliubov *-automorphism by

$$\tau_U(B(F)) := B(UF).$$

• For the special case of the unitary group $U_t = e^{-itH}$, where $H \in \mathcal{L}(\mathfrak{H})$ is self-adjoint and $\{H, J\} = 0$, we set

$$\tau^t(B(F)) := B(U_{-t}F).$$

Correlation expectation
 Correlation structure
 Correlation asymptotics
 Remarks

1.1 General setting

States

- States are normalized positive linear functionals ω on \mathfrak{A} , denoted $\mathcal{E}(\mathfrak{A})$.
- For the nonequilibrium situation, we use:

NESS [Ruelle 01]

A *NESS* $\omega \in \mathcal{E}(\mathfrak{A})$ associated with the C^* -dynamical system (\mathfrak{A}, τ) and the initial state $\omega_0 \in \mathcal{E}(\mathfrak{A})$ is a weak-* limit point for $T \to \infty$ of

$$\left\{\frac{1}{T}\int_0^T \mathrm{d}t \,\,\omega_0 \circ \tau^t \,\Big|\, T>0\right\}.$$

• The two-point function is characterized as follows:

Density

The *density* of a state $\omega \in \mathcal{E}(\mathfrak{A})$ is the operator $S \in \mathcal{L}(\mathfrak{H})$ satisfying $0 \leq S^* = S \leq 1$ and JSJ = 1 - S, and, for all $F, G \in \mathfrak{H}$,

 $\omega(B^*(F)B(G)) = (F, SG).$

Correlation expectation
 Correlation structure
 Correlation asymptotics
 Remarks

1.1 General setting

States

The class of states we are concerned with:

Quasifree states [Araki 71]

A state $\omega \in \mathcal{E}(\mathfrak{A})$ is called *quasifree* if it vanishes on odd polynomials in the generators, and if it is a Pfaffian on the even polynomials, *i.e.*

$$\omega(B(F_1)...B(F_{2n})) = \operatorname{pf}(\Omega_n),$$

where $\Omega_n \in \mathbb{C}^{2n \times 2n}$ is defined to be skew-symmetric and, for i < j,

$$\Omega_{ij} := \omega(B(F_i)B(F_j))$$

The *Pfaffian* $pf: \mathbb{C}^{2n \times 2n} \to \mathbb{C}$ is defined on all skew-symmetric matrices A by

$$pf(A) := \sum_{\pi} sign(\pi) \prod_{j=1}^{n} A_{\pi(2j-1),\pi(2j)},$$

where the sum is running over all pairings π of $\{1, 2, ..., 2n\}$.

2. Correlation expectation 3. Correlation structure 4. Correlation asymptotics 5. Remarks

1.2 Specific model

Observables

Selfdual CAR A(H, J):

$\mathfrak{H}, B(F), and J$

The one-particle Hilbert space is $\mathfrak{H} := \mathfrak{h}^{\oplus 2}$, and $\mathfrak{h} := \ell^2(\mathbb{Z})$ reads

 $\mathfrak{h}=\mathfrak{h}_L\oplus\mathfrak{h}_{\mathcal{S}}\oplus\mathfrak{h}_R,$

where $\mathfrak{h}_{\alpha} := \ell^2(\mathbb{Z}_{\alpha})$. The complex linear mapping $B : \mathfrak{H} \to \mathcal{L}(\mathfrak{F}(\mathfrak{h}))$ is defined, for $F := [f_1, f_2] \in \mathfrak{H}$, by

$$B(F) := a^*(f_1) + a(\bar{f}_2).$$

The antiunitary involution acts as $J[f_1, f_2] := [\bar{f}_2, \bar{f}_1]$.

2. Correlation expectation 3. Correlation structure 4. Correlation asymptotics 5. Remarks

1.2 Specific model

Observables

EFP correlation observable and expectation value:

 A_n and P(n)

The EFP observable $A_n \in \mathfrak{A}$ reads

$$A_n := \prod_{i=1}^{2n} B(F_i),$$

where, using the translation $u \in \mathcal{L}(\mathfrak{h})$, the form factors $F_i \in \mathfrak{H}$ and the *initial form factors* $G_1, G_2 \in \mathfrak{H}$ are given by

 $F_{2i-1} := u^i \oplus u^i G_1, \quad F_{2i} := u^i \oplus u^i G_2, \quad G_1 := J G_2 := [0, \delta_{x_0-1}].$

The expectation value $P : \mathbb{N} \to [0,1]$ of $A_n \in \mathfrak{A}$ in the NESS $\omega_B \in \mathcal{E}(\mathfrak{A})$ to be constructed below, is denoted by

 $\mathbf{P}(n) := \omega_{\mathbf{B}}(A_n).$

2. Correlation expectation 3. Correlation structure 4. Correlation asymptotics 5. Remarks

1.2 Specific model

Dynamics

Bogoliubov automorphisms:

XY, decoupled, and magnetic Hamiltonians

The XY and the decoupled Hamiltonian $h, h_0 \in \mathcal{L}(\mathfrak{h})$ are defined by

 $\begin{array}{lll} h & := & \operatorname{Re}(u) & (\operatorname{coupled}, \operatorname{translation invariant}), \\ p_0 & := & (\delta_0, \cdot)\delta_0 & (\operatorname{localizes at the origin}), \\ v_L & := & \operatorname{Re}(u^{-(\ell+1)}p_0u^\ell) & (\operatorname{couples left reservoir}), \\ v_R & := & \operatorname{Re}(u^\ell p_0 u^{-(\ell+1)}) & (\operatorname{couples right reservoir}), \\ h_0 & := & h - (v_L + v_R) \\ & = & h_L \oplus h_S \oplus h_R & (\operatorname{decouples subsystems}). \end{array}$

The magnetic Hamiltonian $h_{\rm B} \in \mathcal{L}(\mathfrak{h})$ of coupling strength $\kappa > 0$ is

 $v := p_0,$ $h_B := h + \kappa v$ (coupled, broken translation invariance).

• For any operator $a \in \{h, p_0, v_L, v_R, v, h_B\}$, we set $A := a \oplus -a$.

2. Correlation expectation 3. Correlation structure 4. Correlation asymptotics 5. Remarks

1.2 Specific model

States

Initial state for NESS construction:

Decoupled system

Let $0 < \beta_L < \beta_R < \infty$ be the inverse temperatures. The initial state $\omega_0 \in \mathcal{E}(\mathfrak{A})$ is specified by the density $S_0 \in \mathcal{L}(\mathfrak{H})$ given by

$$S_0 := (1 + e^{-K_0})^{-1},$$

where $K_0 := \beta_L H_L \oplus 0 \oplus \beta_R H_R \in \mathcal{L}(\mathfrak{H}).$

2. Correlation expectation

Proposition: Correlation expectation [A 11]

There exists a unique quasifree NESS $\omega_{\rm B} \in \mathcal{E}(\mathfrak{A})$ associated with the C^* -dynamical system $(\mathfrak{A}, \tau_{\rm B})$ and the initial state $\omega_0 \in \mathcal{E}(\mathfrak{A})$, and

 $\mathbf{P}(n) = \mathbf{pf}(\Omega_n^{\mathrm{aa}} + \Omega_n^{\mathrm{pp}}).$

The asymptotic correlation matrices $\Omega_n^{aa}, \Omega_n^{pp} \in \mathbb{C}^{2n \times 2n}$ are defined, i < j, by

$$\Omega_{ij}^{\text{aa}} := \omega_0(B^*(W(H_0, H_{\text{B}})JF_i)B(W(H_0, H_{\text{B}})F_j)),$$

$$\Omega_{ij}^{\text{pp}} := \sum_{e \in \text{spec}_{\text{pp}}(H_{\text{B}})} \omega_0(B^*(1_e(H_{\text{B}})JF_i)B(1_e(H_{\text{B}})F_j))$$

The wave operator $W(H_0, H_B) \in \mathcal{L}(\mathfrak{H})$ is defined by

$$W(H_0, H_{\mathrm{B}}) := \mathrm{s} - \lim_{t \to \infty} \mathrm{e}^{-\mathrm{i}tH_0} \mathrm{e}^{\mathrm{i}tH_{\mathrm{B}}} \mathbf{1}_{\mathrm{ac}}(H_{\mathrm{B}}).$$

2. Correlation expectation

Proof.

[Correlation decomposition] The NESS expectation has the form

$$\mathbf{P}(n) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathrm{d}t \ \omega_0(\tau_{\mathbf{B}}^t(A_n)) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathrm{d}t \ \mathrm{pf}(\Omega_n(t)),$$

where $\tau_{\rm B}^t$ is the Bogoliubov automorphism generated by $H_{\rm B}$, and the skew-symmetric $\Omega_n(t) \in \mathbb{C}^{2n \times 2n}$ is defined, for i < j, by

$$\Omega_{ij}(t) := \omega_0(B(\mathrm{e}^{\mathrm{i}tH_{\mathrm{B}}}F_i)B(\mathrm{e}^{\mathrm{i}tH_{\mathrm{B}}}F_j)).$$

Since $\operatorname{spec}_{\operatorname{sc}}(H_{\operatorname{B}}) = \emptyset$ and $\operatorname{spec}_{\operatorname{pp}}(H_{\operatorname{B}}) = \{\pm e_{\operatorname{B}}\}$ [Hume-Robinson 86], we decompose $\Omega_n(t) = \sum_{\alpha,\beta \in \{a,p\}} \Omega_n^{\alpha\beta}(t)$ (a/p $\equiv \operatorname{ac/pp}$), where

$$\Omega_{ij}^{\alpha\beta}(t) := (\mathrm{e}^{\mathrm{i}tH_{\mathrm{B}}} \mathbf{1}_{\alpha}(H_{\mathrm{B}})JF_{i}, S_{0}\mathrm{e}^{\mathrm{i}tH_{\mathrm{B}}} \mathbf{1}_{\beta}(H_{\mathrm{B}})F_{j}).$$

2. Correlation expectation

2 [*Case* $\alpha, \beta = ac$] Since $[H_0, S_0] = 0$, we can write

$$\Omega_{ij}^{aa}(t) = (e^{-itH_0}e^{itH_B}1_{ac}(H_B)JF_i, S_0e^{-itH_0}e^{itH_B}1_{ac}(H_B)JF_j).$$

Using trace class scattering theory for $t \to \infty$, the wave $W(H_0, H_B)$ exists [Kato-Rosenblum 57] theory, we get Ω_n^{aa} .

3 [*Case*
$$\alpha \neq \beta$$
] Since $1_{pp}(H_B) \in \mathcal{L}^0(\mathcal{H})$, we have, for $t \to \infty$,
 $|\Omega_{ij}^{ap}(t)| \leq \|\underbrace{1_{pp}(H_B)S_0}_{\in \mathcal{L}^\infty(\mathcal{H})} e^{itH_B} 1_{ac}(H_B)JF_i\| \|F_j\| \longrightarrow 0.$

() [*Case* $\alpha, \beta = pp$] This term has the form

$$\Omega_{ij}^{\rm pp}(t) = \sum_{e,e' \in \{\pm e_{\rm B}\}} e^{-it(e-e')} \left(1_e(H_{\rm B})JF_i, S_0 1_{e'}(H_{\rm B})F_j \right).$$

For ran $1_{e_{B}}(H_{B}) \subset \mathfrak{h} \oplus 0$ and ran $1_{-e_{B}}(H_{B}) \subset 0 \oplus \mathfrak{h}$ [Hume-Robinson 86] and due to the block diagonal structure of S_{0} , we get $\Omega_{n}^{pp}(t) = \Omega_{n}^{pp}$. \Box

3. Correlation structure

Proposition: Correlation structure [A 11]

The NESS EFP is the determinant of the finite section of a Toeplitz operator, a Hankel operator, and an operator of finite rank. The symbol $a \in L^{\infty}(\mathbb{T})$ of the Toeplitz operator reads

 $a = \varphi_{\rm B} s_L + (1 - \varphi_{\rm B}) s_R,$

where the functions $\varphi_{\rm B}, s_{\alpha} \in L^{\infty}(\mathbb{T})$ are defined by

$$s_{\alpha}(k) := \frac{1}{2} (1 - \tanh[\frac{1}{2}\beta_{\alpha}\cos(k)]),$$

$$\varphi_{B}(k) := \chi_{[0,\pi]}(k) \frac{\sin^{2}(k)}{\sin^{2}(k) + \kappa^{2}}.$$

Moreover, the symbol of the Hankel operator is smooth.

3. Correlation structure

Reminder: Toeplitz and Hankel operators

 A theorem by [Toeplitz 11]: Let {a_x}_{x∈ℤ} ⊂ ℂ. Then, the operator on ℓ²(ℕ) defined through

$$f \mapsto \left\{ \sum_{j=1}^{\infty} a_{i-j} f_j \right\}_{i=1}^{\infty}$$

is bounded iff there exists a symbol $a \in L^{\infty}(\mathbb{T})$ s.t.

$$a_x = \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \ a(k) \,\mathrm{e}^{-\mathrm{i}kx}$$

In this case, we write $T[a] \in \mathcal{L}(\ell^2(\mathbb{N}))$, and we set $T_n[a] := P_n T[a] P_n$, where $P_n\{x_1, x_2, \ldots\} := \{x_1, \ldots, x_n, 0, 0, \ldots\}$.

• A theorem by [Nehari 57]: The action is now $f \mapsto \left\{ \sum_{j=1}^{\infty} a_{i+j-1} f_j \right\}_{i=1}^{\infty}$, and we write $H[a], H_n[a]$.

3. Correlation structure

Proof. From the previous proposition, we know that

$$P(n) = pf(\Omega_n^{aa} + \Omega_n^{pp}).$$

[ac-contribution] By the chain rule for wave operators, we have

$$\Omega_{ij}^{\mathrm{aa}} = (W(H, H_{\mathrm{B}})JF_i, \underbrace{W(H_0, H)^* S_0 W(H_0, H)}_{= S \in \mathcal{L}(\mathfrak{H})} W(H, H_{\mathrm{B}})F_j),$$

where S is the density of the translation invariant NESS [A-Pillet 03]. Using stationary trace class scattering theory in its weak abelian form,

$$(F, W(H, H_{\rm B})G) = \int_{-1}^{1} \mathrm{d}e \lim_{\varepsilon \to 0^+} \frac{\varepsilon}{\pi} (R_{e\pm i\varepsilon}(H)F, \frac{R_{e\pm i\varepsilon}(H_{\rm B})G),$$

expressing $R_{e\pm i\varepsilon}(H_B)$ by H, and switching to the energy space of H (*p.a.c.*), the wave operator can be explicitly determined ($\simeq \delta$ -interaction).

3. Correlation structure

[pp-contribution] We have

$$\Omega_{ij}^{\rm pp} = \sum_{e \in \{\pm e_{\rm B}\}} (1_e(H_{\rm B})JF_i, S_0 1_e(H_{\rm B})F_j),$$

where $S_0 \in \mathcal{L}(\mathfrak{H})$ is the density of the initial state. Using the absence of embedded eigenvalues in $\operatorname{spec}_{\operatorname{ac}}(H_B) = [-1, 1]$ [Hume-Robinson 86], the exponentially localized eigenfunctions and the simple eigenvalues $\pm e_B$ can be explicitly determined.

[Pfaffian reduction] Orthogonally transforming the correlation matrix into off-diagonal block form and using basic properties of the Pfaffian, we get

 $\mathbf{P}(n) = \det\left(\Omega_n^{\mathrm{red}}\right),\,$

where $\Omega_n^{\text{red}} \in \mathbb{C}^{n \times n}$ is given by expressions of the form $\Omega_{2i-1\,2j}^{\text{aa}} + \Omega_{2i-1\,2j}^{\text{pp}}$.

([*Toeplitz/Hankel extraction*] Inserting the ac/pp-contributions, we arrive at

 $P(n) = \det(0 \oplus (T_{n-n_0}[a] + H_{n-n_0}[b]) + M_n),$

where $M \in \mathcal{L}^0(\mathbb{C}^{n_0} \oplus \ell^2(\mathbb{N}))$ and $b = \mathcal{O}(\kappa) \in L^{\infty}(\mathbb{T})$ is smooth.

4. Correlation asymptotics

Theorem: Correlation asymptotics [A 11]

For $n \to \infty$, the NESS EFP has an exponentially decaying bound,

$$\mathbf{P}(n) = \mathcal{O}(\mathbf{e}^{-\Gamma n}).$$

The decay rate $\Gamma := \Gamma_R + \Gamma_B > 0$ contains the two parts

$$\begin{split} \Gamma_{R} &:= -\frac{1}{2} \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \, \log[s_{R}(k)], \\ \Gamma_{\mathrm{B}} &:= -\frac{1}{2} \int_{-\pi}^{\pi} \frac{\mathrm{d}k}{2\pi} \, \log[\sigma_{\mathrm{B}}(k)s_{L}(k) + (1 - \sigma_{\mathrm{B}}(k))s_{R}(k)], \end{split}$$

where the function $\sigma_{\mathrm{B}} \in L^{\infty}(\mathbb{T})$ is given by

$$\sigma_{\mathrm{B}}(k) := \frac{\sin^2(k)}{\sin^2(k) + \kappa^2}.$$

4. Correlation asymptotics

Proof.

 [Invertibility and continuity] Since the symbol a ∈ L[∞](T) is real-valued, we use [Hartman-Wintner 54]:

• If $a \in L^{\infty}(\mathbb{T})$ is real-valued, then $\operatorname{spec}(T[a]) = \operatorname{conv}(\operatorname{ess}-\operatorname{ran}(a)).$

For $a \in C(\mathbb{T})$, we get $\operatorname{spec}(T[a]) = \frac{1}{2}[1 - \tanh(\frac{1}{2}\beta_R), 1 + \tanh(\frac{1}{2}\beta_R)]$ s.t.

 $0 \notin \operatorname{spec}(T[a]).$

2 [*Stability*] Moreover, using [Gohberg-Feldman 74]: • If $a \in C(\mathbb{T})$ and if T[a] is invertible, then $\{T_n[a]\}_{n \in \mathbb{N}}$ is stable. we have

$$\limsup_{n \to \infty} \|T_n[a]^{-1}\| < \infty.$$

4. Correlation asymptotics

③ [*Factorization*] In order to use Strong [Szegő 52] for $n \to \infty$ of $\det(T_n[a])/G(a)^n$ with $G(a) := \exp([\log(a)]_0)$ (below), we factorize

where $n_0 := |x_0|$ if $x_0 < 0$ and zero otherwise.

[First factor] Due to the determinantal structure, we have

$$\frac{\mathrm{P}(n)}{\det(T_{n-n_0}[a])} = \det(1+1 \oplus T_{n-n_0}^{-1}[a]((-1) \oplus H_{n-n_0}[b] + M_n)).$$

Since $b \in C^{\infty}(\mathbb{T}) \subset L^{\infty}(\mathbb{T}) \cap B_1^1(\mathbb{T})$, we use [Peller 80]:

• If $b \in L^{\infty}(\mathbb{T})$, then H[b] is trace class iff $b \in B_1^1(\mathbb{T})$. and get

$$H[b] \in \mathcal{L}^1(\ell^2(\mathbb{N})).$$

Hence, the first factor converges due to the [Separation Lemma]:

• If A is invertible, P_nAP_n is stable, and K trace class, then $\det(P_n(A+K)P_n)/\det(P_nAP_n) \rightarrow \det(1+A^{-1}K)$.

4. Correlation asymptotics

Second factor Using First [Szegő 15]:

• If $a \in C(\mathbb{T})$, a real-valued, $\operatorname{ran}(a) \subset (0, \infty)$, and T[a] is invertible, then $\det(T_n[a]) / \det(T_{n-1}[a]) \to G(a)$.

we have

$$\frac{\det(T_{n-n_0}[a])}{\det(T_n[a])} = \prod_{i=1}^{n_0} \frac{\det(T_{n-i}[a])}{\det(T_{n+1-i}[a])} \to G(a)^{x_0}.$$

- [Third factor] In order to apply Strong [Szegő 52]:
 - If $a \in W(\mathbb{T}) \cap B_2^{1/2}(\mathbb{T})$ has no zeroes on \mathbb{T} and $\operatorname{ind}(a) = 0$, then $\det(T_n[a])/G(a)^n$ converges, where $G(a) = \exp([\log(a)]_0)$.

we show that

in

$$a \in C^{1}(\mathbb{T}) \cap PC^{\infty}(\mathbb{T}) \subset W(\mathbb{T}) \cap B_{2}^{1/2}(\mathbb{T}),$$

$$a > 0,$$

$$d(a) = 0.$$

([Decay rate] From the 0th Fourier coefficient $[\log(a)]_0$, we arrive at the decay rate $\Gamma := \log G(a)$ of the bound on the exponential decay.

5. Remarks

Decay rates

$$\Gamma_{\alpha} = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{d}k}{2\pi} \log\left[\frac{1}{4}(1-\tau_{\alpha}^{2})\right]$$

$$\Gamma_{\mathrm{B}} = -\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{d}k}{2\pi} \log\left[\frac{1}{4}(1-[\sigma_{\mathrm{B}}\tau_{L}+(1-\sigma_{\mathrm{B}})\tau_{R}]^{2}\right]$$

Here: $\tau_{\alpha}(k) = \tanh[\frac{1}{2}\beta_{\alpha}\cos(k)])$ and $\sigma_{\rm B}(k) = \sin^2(k)/(\sin^2(k) + \kappa^2)$

- (Small coupling) The theorem holds for any impurity strength κ. In the limit of small κ, we recover the exact decay rate from [A 10] and the bound for general quasifree systems from [A 07].
- (Left mover-right mover) Left movers carrying temperature T_R, left movers reflected at the impurity, and transmitted right movers carrying T_L (see also [A-Barbaroux 07], [A 07, 10] for different NESS correlators).

5. Remarks

(Ordering) If the system is truly out of equilibrium, we have $\Gamma_R > \Gamma_B > \Gamma_L > 0$ (as opposed to the full XY phase diagram).

For $\beta_R = 2$ and $\beta_L = \frac{1}{2}$, the integrand of Γ_R (left, thin line), Γ_L (right, thin line), and of Γ_B with $\kappa = \frac{1}{5}$ (thick line).

• (Regularization) $\kappa > 0$ regularizes the underlying Toeplitz theory in the sense that the symbol characterizing the decay rate is smoother than in the case $\kappa = 0$. The latter case requires Fisher-Hartwig theory [Ehrhardt-Silbermann 96] and leads to a strictly positive power law subleading order [A 10].

5. Remarks

The study for the anisotropic XY model is a priori more complicated:

(Quasifree structure) Due to the ergodic mean, the Pfaffian form of the correlation cannot be preserved in the present form.

(**Toeplitz theory**) The symbol of the Toeplitz operator involved becomes *nonscalar* and *nonregular*. But, for block symbols, it is in general difficult to establish invertibility since [Coburn 66]'s Lemma does not hold. And, out of equilibrium, the regularity is lost.

- (Different approaches) It can be advantageous to recast the correlation into the form of a Fredholm determinant, maybe with the help of the [Borodin-Okounkov 00] formula (regularity...).
- Interesting interplay between physics out of equilibrium, operator algebras, and asymptotic analysis: To be continued!