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1. Motivation

Open systems: Fundamental paradigm
A confined sample is suitably coupled to two thermal reservoirs at different
temperatures:
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We want to study the following natural questions:
PHYS

I Is the coupled system approaching a unique state for large times?

I If so, how does this asymptotic state relate to the underlying scattering
process?

I Does it carry a nonvanishing heat flux?



2. Large quantum mechanical systems

How to describe our paradigm from first principles?

I An extended thermal reservoir has a large number N of degrees of
freedom

I Idealization: N /∈ N
MATH 2 approaches: TD limit of finite systems, directly infinite systems

I If N /∈ N, no universal Hilbert space description available due to the
existence of inequivalent representations (unlike N ∈ N)
MATH E.g. Araki-Wyss GNS representation of quasifree fermionic systems

Our algebraic formulation has the following 3 ingredients:
[1930s: von Neumann, Murray, Gelfand, Segal, etc.]

Def: Observables, dynamics, and states
I Unital C∗-algebra A

I Strongly continuous group τ t ∈ Aut(A)

I Normalized positive ω ∈ A∗

MATH E.g. A = L(H) with τt(A) = eitHAe−itH and mixed state ω(A) = tr(%A)



3. Quasifree fermionic systems

Quasifree fermions play an important role (in and) out of equilibrium:

I They allow for a powerful description by means of scattering theory on
the one-particle Hilbert space which underlies the observable algebra

I They are realized in nature
PHYS E.g. Metallic solids in the independent electron approximation
E.g. XY spin chain (also XX if γ = 0) [Lieb et al. 1961, Araki 1984]:
(1 + γ)σxi σ

x
i+1 + (1− γ)σyi σ

y
i+1 vs. a∗i ai+1 + a∗i+1ai + γ(a∗i a

∗
i+1 + ai+1ai)

PrCl3: Cover page! [e.g. Culvahouse et al. 1969, D’Iorio et al. 1983]

We next specify the 3 ingredients for quasifree fermionic systems:

Def: Selfdual CAR [Araki 1971]

The generators B(F ) with F ∈ H of a selfdual CAR algebra A over a complex
1-particle Hilbert space H endowed with an antiunitary involution J satisfy:

I H 3 F 7→ B(F ) ∈ A is complex linear

I B∗(F ) = B(JF )

I {B∗(F ), B(G)} = (F,G)1

MATH Natural framework (∗-isomorphic with CAR algebra over the range of any basis projection):

H = h⊕ h with Jf1 ⊕ f2 = f̄2 ⊕ f̄1 and B(f1 ⊕ f2) = a
∗
(f1) + a(f̄2)

PHYS Broken gauge invariance (e.g. XY)



3. Quasifree fermionic systems

The other 2 ingredients are as follows:

Def: Bogoliubov dynamics
The quasifree dynamics on the selfdual CAR algebra A generated by the
Hamiltonian H ∈ L(H) with H∗ = H and JHJ = −H is given by:

τ t(B(F )) = B(eitHF )

MATH C∗-dynamical system: (A, τt)
Strong continuity: 2‖B(F )‖2 = ‖F‖2 + [‖F‖4 − |(F, JF )|2]

1
2 ≤ 2‖F‖2

Def: Quasifree state
The quasifree state induced by the 2-point operator R ∈ L(H) with R∗ = R,
0 ≤ R ≤ 1, and JRJ = 1−R, is an even state given by:

ω(B(F1)B(F2) . . . B(F2n)) = pf
(
[(JFi, RFj)]i,j∈{1,...,2n}

)
MATH Pfaffian: pf(A) =

∑
π sign(π)

∏n
i=1 Aπ(2i−1),π(2i), summing over pairings:r r r r r r������

π = (123456)

− r r r r r r������
π = (123546)

+ r r r r r r������
π = (123645)

− r r r r r r������
π = (132456)

+ . . .

PHYS Gauge invariance: R is diagonal w.r.t. H = h⊕ h



4. Scattering approach to NESS

Def: Nonequilibrium steady state (NESS) [Ruelle 2001]

The NESS associated with ω0 and τ t are the limits for T →∞ of

1

T

∫ T

0

dt ω0 ◦ τ t

MATH Weak-∗ topology: BA1,...,An;ε(ω) = {ω′ ∈ A∗ | |ω′(Ai)− ω(Ai)| < ε for all i}
PHYS Inherent imprecision of measurements

We specialize to the fundamental paradigm for quasifree fermionic systems:

Def: Nonequilibrium setting
I The 1-particle Hilbert space reads H = HL ⊕ HS ⊕ HR

I The dynamics τ t0, generated by H0, propagates the decoupled system

I The quasifree state ω0, induced by R0, describes the decoupled system
with reservoirs in thermal equilibrium at temperatures TL 6= TR

I The dynamics τ t, generated by H, couples the reservoirs to the sample

PHYS Configuration space Z = ZL ∪ ZS ∪ ZR (e.g. XY)

MATH KMS state: ω(Aτ iβ(B)) = ω(BA) (on entire analytic subalgebra)



4. Scattering approach to NESS

Thm: NESS [A-Pillet 2003, A 2018 ip]

If the coupling satisfies H −H0 ∈ L1(H), there exists a unique NESS ω+

associated with ω0 and τ t whose 2-point operator has the form

R+ =W ∗+R0W+ +
∑

λ∈σpp(H)

1λ(H)R01λ(H)

MATH/PHYS The wave operator from scattering theory is defined by:

W+ = s− limt→+∞e−itH0eitH1ac(H)

Ingredients of the Proof:
I Since ω0 is quasifree, we analyze the 2-point function

I The spectral decomposition (with 1sc(H) = 0) and Kato-Rosenblum theory yields
the scattering contribution since, as [H0, R0] = 0, we can write:

ω0(τ t[B(F )B(G)]) = (e−itH0eitHJF,R0e−itH0eitHG)

I Averaging yields the 1pp(H)-contribution and, generally, a non-quasifree NESS

MATH Well-developed techniques from scattering theory (in particular, the stationary approach)



5. Transport properties

The next 3 examples succinctly illustrate rigorous scattering theory in action:
PHYS E.g. the translation invariant XY/XX chains

Thm 1: Entropy production [A-Pillet 2003, A et al. 2007, A 2018 ip]

The heat flux, i.e., the NESS expecation value of the extensive energy current
observable describing the energy flow from one reservoir into the sample, is

1

2δ
Ep(ω+) =

∫
T
dk |V+H| [ρL(|H|)− ρR(|H|)]

MATH L/R movers: Fermi exponent βH + δsign(V+)H with asymptotic velocity V+

PHYS Strict positivity of the entropy production

Thm 2: Weak coupling [A 2013]

The entropy production σδ in the van Hove weak coupling regime λ→ 0 is
related to the microscopic entropy production as

Ep(ω+) = σδλ
2 +O(λ4)

MATH Regularity through the stationary approach

PHYS Triviality of commutants implies strict positivity of the van Hove entropy production



5. Transport properties

Thm 3: Nonequilibrium phase transitions [A 2016, 2018 ip]

If the sample is exposed to a local external magnetic field µ→ 0, the entropy
production exhibits a second order quantum phase transition

∂µEp(ω+) = Cδ µ log(µ) +O(µ)

PHYS Ehrenfest type classification

The following properties have also been rigorously derived:

I Landauer-Büttiker: Heat flux through the 1-particle S-matrix
(entropy production, linear response,... ) [A et al. 2007]

I Correlations: Asymptotic regimes or upper bounds (spin-spin, efp, von
Neumann entropy), broken translation invariance [A 2010, 2011]

MATH Subtle problems from Toeplitz theory due to nonequilibrium symbol singularities



6.Outlook

Quasifree fermionic systems are rich:

A lot more to come!
I Nonequilibrium phase transitions: Universality classes

I Entropy production: Symmetries and C∗ structural properties

I Correlations: Perturbation theory

Thank you!


