

Master 2 UE01: Algèbres d'opérateurs et théorie quantique

Contenu

C*-Algèbres

Définitions, Exemples, Analyse spectrale, Représentations et états, Construction de Gelfand-Naimark-Segal **W*-Algèbres**

Topologies d'opérateurs, Commutant, Théorème du bicommutant

Théorie de Tomita-Takesaki

Opérateurs modulaires, Groupe modulaire, Théorème de Tomita-Takesaki, Etats KMS

• Formule-clé

Thm: Gelfand-Naimark-Segal (GNS)

Soit \mathcal{A} une C*-algèbre et ω un état sur \mathcal{A} . Alors, il existe une (unique) représentation cyclique $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ de \mathcal{A} t.q., pour tout $A \in \mathcal{A}$:

$$\omega(A) = (\Omega_{\omega}, \pi_{\omega}(A)\Omega_{\omega})$$

Applications

Approche algébrique de la *mécanique (statistique) quantique*, Approche algébrique de la *théorie quantique des champs*, Théorie des représentations de groupes, Géométrie non commutative, ...